Continuity of the conic hull

In a real Hilbert space V, the conic hull of G is the set cone(G) consisting of all nonnegative linear combinations of elements of G. Many optimization problems are sensitive to the changes in cone(G) that result from changes in G itself. Motivated by one such problem, we derive necessary and sufficient conditions for the … Read more

Decentralized Stochastic Bilevel Optimization with Improved Per-Iteration Complexity

Bilevel optimization recently has received tremendous attention due to its great success in solving important machine learning problems like meta learning, reinforcement learning, and hyperparameter optimization. Extending single-agent training on bilevel problems to the decentralized setting is a natural generalization, and there has been a flurry of work studying decentralized bilevel optimization algorithms. However, it … Read more

Wasserstein Regularization for 0-1 Loss

Wasserstein distributionally robust optimization (DRO) finds robust solutions by hedging against data perturbation specified by distributions in a Wasserstein ball. The robustness is linked to the regularization effect, which has been studied for continuous losses in various settings. However, existing results cannot be simply applied to the 0-1 loss, which is frequently seen in uncertainty … Read more

Decision-making with Side Information: A Causal Transport Robust Approach

We consider stochastic optimization with side information where, prior to decision making, covariate data are available to inform better decisions. In particular, we propose to consider a distributionally robust formulation based on causal transport distance. Compared with divergence and Wasserstein metric, the causal transport distance is better at capturing the information structure revealed from the conditional distribution … Read more

Data-driven Multistage Distributionally Robust Linear Optimization with Nested Distance

We study multistage distributionally robust linear optimization, where the uncertainty set is defined as a ball of distribution centered at a scenario tree using the nested distance. The resulting minimax problem is notoriously difficult to solve due to its inherent non-convexity. In this paper, we demonstrate that, under mild conditions, the robust risk evaluation of … Read more

Robust Two-Stage Optimization with Covariate Data

We consider a generalization of two-stage decision problems in which the second-stage decision may be a function of a predictive signal but cannot adapt fully to the realized uncertainty. We will show how such problems can be learned from sample data by considering a family of regularized sample average formulations. Furthermore, our regularized data-driven formulations … Read more

Data-Driven Approximation of Contextual Chance-Constrained Stochastic Programs

Uncertainty in classical stochastic programming models is often described solely by independent random parameters, ignoring their dependence on multidimensional features. We describe a novel contextual chance-constrained programming formulation that incorporates features, and argue that solutions that do not take them into account may not be implementable. Our formulation cannot be solved exactly in most cases, … Read more

Compromise Policy for Multi-stage Stochastic Linear Programming: Variance and Bias Reduction

This paper focuses on algorithms for multi-stage stochastic linear programming (MSLP). We propose an ensemble method named the “compromise policy”, which not only reduces the variance of the function approximation but also reduces the bias of the estimated optimal value. It provides a tight lower bound estimate with a confidence interval. By exploiting parallel computing, … Read more

The complexity of branch-and-price algorithms for the capacitated vehicle routing problem with stochastic demands

The capacitated vehicle routing problem with stochastic demands (CVRPSD) is a variant of the deterministic capacitated vehicle routing problem where customer demands are random variables. While the most successful formulations for several deterministic vehicle-routing problem variants are based on a set-partitioning formulation, adapting such formulations for the CVRPSD under mild assumptions on the demands remains … Read more

A Machine Learning Approach to Solving Large Bilevel and Stochastic Programs: Application to Cycling Network Design

We present a novel machine learning-based approach to solving bilevel programs that involve a large number of independent followers, which as a special case include two-stage stochastic programming. We propose an optimization model that explicitly considers a sampled subset of followers and exploits a machine learning model to estimate the objective values of unsampled followers. … Read more