Model-Based Derivative-Free Methods for Convex-Constrained Optimization

We present a model-based derivative-free method for optimization subject to general convex constraints, which we assume are unrelaxable and accessed only through a projection operator that is cheap to evaluate. We prove global convergence and a worst-case complexity of $O(\epsilon^{-2})$ iterations and objective evaluations for nonconvex functions, matching results for the unconstrained case. We introduce … Read more

Mixed-Integer Optimization with Constraint Learning

We establish a broad methodological foundation for mixed-integer optimization with learned constraints. We propose an end-to-end pipeline for data-driven decision making in which constraints and objectives are directly learned from data using machine learning, and the trained models are embedded in an optimization formulation. We exploit the mixed-integer optimization-representability of many machine learning methods, including … Read more

A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems

In this paper, we study a distributionally robust multi-item newsvendor problem, where the demand distribution is unknown but specified with a general event-wise ambiguity set. Using the event-wise affine decision rules, we can obtain a conservative approximation formulation of the problem, which can typically be further reformulated as a linear program. In order to efficiently … Read more

Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems

We consider mixed-integer linear quantile minimization problems that yield large-scale problems that are very hard to solve for real-world instances. We motivate the study of this problem class by two important real-world problems: a maintenance planning problem for electricity networks and a quantile-based variant of the classic portfolio optimization problem. For these problems, we develop … Read more

A Robust Optimization Method with Successive Linear Programming for Intensity Modulated Radiation Therapy

Intensity modulated radiation therapy (IMRT) is one of radiation therapies for cancers, and it is considered to be effective for complicated shapes of tumors, since dose distributions from each irradiation can be modulated arbitrary. Fluence map optimization (FMO), which optimizes beam intensities with given beam angles, is often formulated as an optimization problem with dose … Read more

Simple odd beta-cycle inequalities for binary polynomial optimization

We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd beta-cycle inequalities valid for this polytope, showed that these generally have Chvátal rank 2 with respect to the standard relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle … Read more

Solution to a Monotone Inclusion Problem using the Relaxed Peaceman-Rachford Splitting Method: Convergence and its Rates

We consider the convergence behavior using the relaxed Peaceman-Rachford splitting method to solve the monotone inclusion problem $0 \in (A + B)(u)$, where $A, B: \Re^n \rightrightarrows \Re^n$ are maximal $\beta$-strongly monotone operators, $n \geq 1$ and $\beta > 0$. Under a technical assumption, convergence of iterates using the method on the problem is proved … Read more

On Componental Operators in Hilbert Space

We consider a Hilbert space that is a product of a finite number of Hilbert spaces and operators that are represented by “componental operators” acting on the Hilbert spaces that form the product space. We attribute operatorial properties to the componental operators rather than to the full operators. The operatorial properties that we discuss include … Read more

Quadratic Optimization Models for Balancing Preferential Access and Fairness: Formulations and Optimality Conditions

Published in INFORMS Journal on Computing. https://doi.org/10.1007/978-3-031-47859-8_26 Typically, within facility location problems, fairness is defined in terms of accessibility of users. However, for facilities perceived as undesirable by communities hosting them, fairness between the usage of facilities becomes especially important. Limited research exists on this notion of fairness. To close this gap, we develop a series … Read more

Strong duality of a conic optimization problem with a single hyperplane and two cone constraints

Strong (Lagrangian) duality of general conic optimization problems (COPs) has long been studied and its profound and complicated results appear in different forms in a wide range of literatures. As a result, characterizing the known and unknown results can sometimes be difficult. The aim of this article is to provide a unified and geometric view … Read more