New results related to cutters and to an extrapolated block-iterative method for finding a common fixed point of a collection of them

Given a Hilbert space and a finite family of operators defined on the space, the common fixed point problem (CFPP) is to find a point in the intersection of the fixed point sets of these operators.  Instances of the problem have numerous applications in science and engineering. We consider an extrapolated block-iterative method with dynamic … Read more

A tutorial on properties of the epigraph reformulation

This paper systematically surveys useful properties of the epigraph reformulation for optimization problems, and complements them by some new results. We focus on the complete compatibility of the original formulation and the epigraph reformulation with respect to solvability and unsolvability, the compatibility with respect to some, but not all, basic constraint qualifications, the formulation of … Read more

Cut-based Conflict Analysis in Mixed Integer Programming

For almost two decades, mixed integer programming (MIP) solvers have used graph- based conflict analysis to learn from local infeasibilities during branch-and-bound search. In this paper, we improve MIP conflict analysis by instead using reasoning based on cuts, inspired by the development of conflict-driven solvers for pseudo- Boolean optimization. Phrased in MIP terminology, this type … Read more

Generator Subadditive Functions for Mixed-Integer Programs

For equality-constrained linear mixed-integer programs (MIP) defined by rational data, it is known that the subadditive dual is a strong dual and that there exists an optimal solution of a particular form, termed generator subadditive function. Motivated by these results, we explore the connection between Lagrangian duality, subadditive duality and generator subadditive functions for general … Read more

Parameter-free proximal bundle methods with adaptive stepsizes for hybrid convex composite optimization problems

This paper develops a parameter-free adaptive proximal bundle method with two important features: 1) adaptive choice of variable prox stepsizes that “closely fits” the instance under consideration; and 2) adaptive criterion for making the occurrence of serious steps easier. Computational experiments show that our method performs substantially fewer consecutive null steps (i.e., a shorter cycle) … Read more

Fully First-Order Methods for Decentralized Bilevel Optimization

This paper focuses on decentralized stochastic bilevel optimization (DSBO) where agents only communicate with their neighbors. We propose Decentralized Stochastic Gradient Descent and Ascent with Gradient Tracking (DSGDA-GT), a novel algorithm that only requires first-order oracles that are much cheaper than second-order oracles widely adopted in existing works. We further provide a finite-time convergence analysis … Read more

Missing Value Imputation via Mathematical Optimization with Instance-and-Feature Neighborhoods

Datasets collected for analysis often contain a certain amount of incomplete instances, where some feature values are missing. Since many statistical analyses and machine learning algorithms depend on complete datasets, missing values need to be imputed in advance. Bertsimas et al. (2018) proposed a high-performance method that combines machine learning and mathematical optimization algorithms for … Read more

On the Complexity of Finding Locally Optimal Solutions in Bilevel Linear Optimization

We consider the theoretical computational complexity of finding locally optimal solutions to bilevel linear optimization problems (BLPs), from the leader’s perspective. We show that, for any constant \(c > 0\), the problem of finding a leader’s solution that is within Euclidean distance \(c^n\) of any locally optimal leader’s solution, where \(n\) is the total number … Read more

An inexact ADMM for separable nonconvex and nonsmooth optimization

An Inexact Alternating Direction Method of Multiplies (I-ADMM) with an expansion linesearch step was developed for solving a family of separable minimization problems subject to linear constraints, where the objective function is the sum of a smooth but possibly nonconvex function and a possibly nonsmooth nonconvex function. Global convergence and linear convergence rate of the … Read more