Geometry of Semidefinite Max-Cut Relaxations via Ranks

Semidefinite programming (SDP) relaxations are proving to be a powerful tool for finding tight bounds for hard discrete optimization problems. This is especially true for one of the easier NP-hard problems, the Max-Cut problem (MC). The well-known SDP relaxation for Max-Cut, here denoted SDP1, can be derived by a first lifting into matrix space and … Read more

Improved complexity for maximum volume inscribed ellipsoids

Let $\Pcal=\{x | Ax\le b\}$, where $A$ is an $m\times n$ matrix. We assume that $\Pcal$ contains a ball of radius one centered at the origin, and is contained in a ball of radius $R$ centered at the origin. We consider the problem of approximating the maximum volume ellipsoid inscribed in $\Pcal$. Such ellipsoids have … Read more

Augmented self-concordant barriers and nonlinear optimization problems with finite complexity.

In this paper we study special barrier functions for the convex cones, which are the sum of a self-concordant barrier for the cone and a positive-semidefinite quadratic form. We show that the central path of these augmented barrier functions can be traced with linear speed. We also study the complexity of finding the analytic center … Read more

Componentwise fast convergence in the solution of full-rank systems of nonlinear equations

The asymptotic convergence of parameterized variants of Newton’s method for the solution of nonlinear systems of equations is considered. The original system is perturbed by a term involving the variables and a scalar parameter which is driven to zero as the iteration proceeds. The exact local solutions to the perturbed systems then form a differentiable … Read more

An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results

We introduce a new distribution center (DC) location model that incorporates working inventory and safety stock inventory costs at the distribution centers. In addition, the model incorporates transport costs from the suppliers to the DCs that explicitly reflect economies of scale through the use of a fixed cost term. The model is formulated as a … Read more

An Interior-Point Perspective on Sensitivity Analysis in Semidefinite Programming

We study the asymptotic behavior of the interior-point bounds arising from the work of Yildirim and Todd on sensitivity analysis in semidefinite programming in comparison with the optimal partition bounds. For perturbations of the right-hand side vector and the cost matrix, we show that the interior-point bounds evaluated on the central path using the Monteiro-Zhang … Read more

A Computational Study of a Gradient-Based Log-Barrier Algorithm for a Class of Large-Scale SDPs

The authors of this paper recently introduced a transformation \cite{BuMoZh99-1} that converts a class of semidefinite programs (SDPs) into nonlinear optimization problems free of matrix-valued constraints and variables. This transformation enables the application of nonlinear optimization techniques to the solution of certain SDPs that are too large for conventional interior-point methods to handle efficiently. Based … Read more

Automatic Differentiation Tools in Optimization Software

We discuss the role of automatic differentiation tools in optimization software. We emphasize issues that are important to large-scale optimization and that have proved useful in the installation of nonlinear solvers in the NEOS Server. Our discussion centers on the computation of the gradient and Hessian matrix for partially separable functions and shows that the … Read more

Variational Analysis of Non-Lipschitz Spectral Functions

We consider spectral functions $f \circ \lambda$, where $f$ is any permutation-invariant mapping from $\Cx^n$ to $\Rl$, and $\lambda$ is the eigenvalue map from the set of $n \times n$ complex matrices to $\Cx^n$, ordering the eigenvalues lexicographically. For example, if $f$ is the function “maximum real part CitationMath. Programming 90 (2001), pp. 317-352