On Duality Theory for Non-Convex Semidefinite Programming

In this paper, with the help of convex-like function, we discuss the duality theory for nonconvex semidefinite programming. Our contributions are: duality theory for the general nonconvex semidefinite programming when Slater’s condition holds; perfect duality for a special case of the nonconvex semidefinite programming for which Slater’s condition fails. We point out that the results … Read more

Min-Max Theorems Related to Geometric Representations of Graphs and their SDPs

Lovasz proved a nonlinear identity relating the theta number of a graph to its smallest radius hypersphere embedding where each edge has unit length. We use this identity and its generalizations to establish min-max theorems and to translate results related to one of the graph invariants above to the other. Classical concepts in tensegrity theory … Read more

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fi elds. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A … Read more

On duality gap in linear conic problems

In their paper “Duality of linear conic problems” A. Shapiro and A. Nemirovski considered two possible properties (A) and (B) for dual linear conic problems (P) and (D). The property (A) is “If either (P) or (D) is feasible, then there is no duality gap between (P) and (D)”, while property (B) is “If both … Read more

Convex duality in stochastic programming and mathematical finance

This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a … Read more

Scenario decomposition of risk-averse multistage stochastic programming problems

For a risk-averse multistage stochastic optimization problem with a finite scenario tree, we introduce a new scenario decomposition method and we prove its convergence. The method is applied to a risk-averse inventory and assembly problem. In addition, we develop a partially regularized bundle method for nonsmooth optimization. CitationRUTCOR, Rutgers University, Piscataway, NJ 08854ArticleDownload View PDF

Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints and Applications

In this work, a nonsmooth multiobjective optimization problem involving generalized invexity with cone constraints and Applications (for short, (MOP)) is considered. The Kuhn-Tucker necessary and sufficient conditions for (MOP) are established by using a generalized alternative theorem of Craven and Yang. The relationship between weakly efficient solutions of (MOP) and vector valued saddle points of … Read more

Kusuoka Representation of Higher Order Dual Risk Measures

We derive representations of higher order dual measures of risk in $\mathcal{L}^p$ spaces as suprema of integrals of Average Values at Risk with respect to probability measures on $(0,1]$ (Kusuoka representations). The suprema are taken over convex sets of probability measures. The sets are described by constraints on the dual norms of certain transformations of … Read more

Sparse optimization with least-squares constraints

The use of convex optimization for the recovery of sparse signals from incomplete or compressed data is now common practice. Motivated by the success of basis pursuit in recovering sparse vectors, new formulations have been proposed that take advantage of different types of sparsity. In this paper we propose an efficient algorithm for solving a … Read more

Trace Norm Regularization: Reformulations, Algorithms, and Multi-task Learning

We consider a recently proposed optimization formulation of multi-task learning based on trace norm regularized least squares. While this problem may be formulated as a semidefinite program (SDP), its size is beyond general SDP solvers. Previous solution approaches apply proximal gradient methods to solve the primal problem. We derive new primal and dual reformulations of … Read more