On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem

We investigate three competing notions that generalize the notion of a facet of finite-dimensional polyhedra to the infinite-dimensional Gomory–Johnson model. These notions were known to coincide for continuous piecewise linear functions with rational breakpoints. We show that two of the notions, extreme functions and facets, coincide for the case of continuous piecewise linear functions, removing … Read more

On the Existence of Pareto Solutions for Polynomial Vector Optimization Problems

We are interested in the existence of Pareto solutions to the vector optimization problem $$\text{\rm Min}_{\,\mathbb{R}^m_+} \{f(x) \,|\, x\in \mathbb{R}^n\},$$ where $f\colon\mathbb{R}^n\to \mathbb{R}^m$ is a polynomial map. By using the {\em tangency variety} of $f$ we first construct a semi-algebraic set of dimension at most $m – 1$ containing the set of Pareto values of … Read more

Preconditioning PDE-constrained optimization with L^1-sparsity and control constraints

PDE-constrained optimization aims at finding optimal setups for partial differential equations so that relevant quantities are minimized. Including sparsity promoting terms in the formulation of such problems results in more practically relevant computed controls but adds more challenges to the numerical solution of these problems. The needed L^1-terms as well as additional inclusion of box … Read more

Characterizations of Mixed Binary Convex Quadratic Representable Sets

Representability results play a fundamental role in optimization since they provide characterizations of the feasible sets that arise from optimization problems. In this paper we study the sets that appear in the feasibility version of mixed binary convex quadratic optimization problems. We provide a complete characterization of the sets that can be obtained as the … Read more

A parallelizable augmented Lagrangian method applied to large-scale non-convex-constrained optimization problems

We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex, continuously differentiable and possibly nonlinear, while the non-relaxed constraint set is compact but not necessarily convex. Such problems arise, for example, in the split-variable deterministic reformulation of stochastic mixed-integer optimization problems. The dual solution approach needs … Read more

Efficient solution of quadratically constrained quadratic subproblems within the MADS algorithm

The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features is a versatile search step in which quadratic models are built leading to a series of quadratically constrained quadratic subproblems. This work explores different algorithms that exploit the structure of the quadratic models: … Read more

Rigorous results in electronic structure calculations

Electronic structure calculations, in particular the computation of the ground state energy, lead to challenging problems in optimization. These problems are of enormous importance in quantum chemistry for calculations of properties of solids and molecules. Minimization methods for computing the ground state energy can be developed by employing a variational approach, where the second-order reduced … Read more

Locally weighted regression models for surrogate-assisted design optimization

Locally weighted regression combines the advantages of polynomial regression and kernel smoothing. We present three ideas for appropriate and effective use of LOcally WEighted Scatterplot Smoothing (LOWESS) models for surrogate optimization. First, a method is proposed to reduce the computational cost of LOWESS models. Second, a local scaling coefficient is introduced to adapt LOWESS models … Read more

Statistical inference and hypotheses testing of risk averse stochastic programs

We study statistical properties of the optimal value and optimal solutions of the Sample Average Approximation of risk averse stochastic problems. Central Limit Theorem type results are derived for the optimal value when the stochastic program is expressed in terms of a law invariant coherent risk measure having a discrete Kusuoka representation. The obtained results … Read more

The Rate of Convergence of Augmented Lagrange Method for a Composite Optimization Problem

In this paper we analyze the rate of local convergence of the augmented Lagrange method for solving optimization problems with equality constraints and the objective function expressed as the sum of a convex function and a twice continuously differentiable function. The presence of the non-smoothness of the convex function in the objective requires extensive tools … Read more