A novel approach for bilevel programs based on Wolfe duality

This paper considers a bilevel program, which has many applications in practice. To develop effective numerical algorithms, it is generally necessary to transform the bilevel program into a single-level optimization problem. The most popular approach is to replace the lower-level program by its KKT conditions and then the bilevel program can be transformed into a … Read more

Derivative-free separable quadratic modeling and cubic regularization for unconstrained optimization

We present a derivative-free separable quadratic modeling and cubic regularization technique for solving smooth unconstrained minimization problems. The derivative-free approach is mainly concerned with building a quadratic model that could be generated by numerical interpolation or using a minimum Frobenious norm approach, when the number of points available does not allow to build a complete … Read more

A Semismooth Newton-Type Method for the Nearest Doubly Stochastic Matrix Problem

We study a semismooth Newton-type method for the nearest doubly stochastic matrix problem where both differentiability and nonsingularity of the Jacobian can fail. The optimality conditions for this problem are formulated as a system of strongly semismooth functions. We show that the so-called local error bound condition does not hold for this system. Thus the … Read more

Battery Storage Formulation and Impact on Day Ahead Security Constrained Unit Commitment

This paper discusses battery storage formulations and analyzes the impact of the constraints on the computational performance of security constrained unit commitment (SCUC). Binary variables are in general required due to mutual exclusiveness of charging and discharging modes. We use valid inequalities to improve the SOC constraints. Adding batteries to the MISO day ahead market … Read more

Generating Cutting Inequalities Successively for Quadratic Optimization Problems in Binary Variables

We propose a successive generation of cutting inequalities for binary quadratic optimization problems. Multiple cutting inequalities are successively generated for the convex hull of the set of the optimal solutions $\subset \{0, 1\}^n$, while the standard cutting inequalities are used for the convex hull of the feasible region. An arbitrary linear inequality with integer coefficients … Read more

Nash Bargaining Partitioning in Decentralized Portfolio Management

In the context of decentralized portfolio management, understanding how to distribute a fixed budget among decentralized intermediaries is a relevant question for financial investors. We consider the Nash bargaining partitioning for a class of decentralized investment problems, where intermediaries are in charge of the portfolio construction in heterogeneous local markets and act as risk/disutility minimizers. … Read more

Optimization formulations for storage devices

We consider a storage device, such as a pumped storage hydroelectric generator, that has a state-of-charge together with mutually exclusive charging and generating modes. We develop valid inequalities for a storage model that uses binary variables to represent the charging and generating modes. To investigate the model, we consider two contexts, standalone and large-scale. The … Read more

Robust Team Orienteering Problem with Decreasing Profits

This paper studies a robust variant of the team orienteering problem with decreasing profits (TOP-DP), where a fleet of vehicles are dispatched to serve customers with decreasing profits in a limited time horizon. The service times at customers are assumed to be uncertain, which are characterized by a budgeted uncertainty set. Our goal is to … Read more

Exactness in SDP relaxations of QCQPs: Theory and applications

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems. In a QCQP, we are asked to minimize a (possibly nonconvex) quadratic function subject to a number of (possibly nonconvex) quadratic constraints. Such problems arise naturally in many areas of operations research, computer science, and engineering. Although QCQPs are NP-hard to solve in … Read more

Designing an optimal sequence of non-pharmaceutical interventions for controlling COVID-19

The COVID-19 pandemic has had an unprecedented impact on global health and the economy since its inception in December, 2019 in Wuhan, China. Non-pharmaceutical interventions (NPI) like lockdowns and curfews have been deployed by affected countries for controlling the spread of infections. In this paper, we develop a Mixed Integer Non-Linear Programming (MINLP) epidemic model … Read more