Optimal Eco-Routing for Hybrid Vehicles with Mechanistic/Data-Driven Powertrain Model Embedded

Hybrid Electric Vehicles (HEVs) are regarded as an important (transition) element of sustainable transportation. Exploiting the full potential of HEVs requires (i) a suitable route selection and (ii) suitable power management, i.e., deciding on the split between combustion engine and electric motor usage as well as the mode of the electric motor, i.e., driving or … Read more

Inductive Linearization for Binary Quadratic Programs with Linear Constraints: A Computational Study

The computational performance of inductive linearizations for binary quadratic programs in combination with a mixed-integer programming solver is investigated for several combinatorial optimization problems and established benchmark instances. Apparently, a few of these are solved to optimality for the first time. Citationpreprint (no internal series / number): University of Bonn, Germany June 11, 2021ArticleDownload View … Read more

LSOS: Line-search Second-Order Stochastic optimization methods for nonconvex finite sums

We develop a line-search second-order algorithmic framework for minimizing finite sums. We do not make any convexity assumptions, but require the terms of the sum to be continuously differentiable and have Lipschitz-continuous gradients. The methods fitting into this framework combine line searches and suitably decaying step lengths. A key issue is a two-step sampling at … Read more

Distributionally Robust Optimization with Markovian Data

We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven distributionally robust optimization model to estimate the problem’s objective function and optimal solution. By leveraging results from … Read more

MatQapNB User Guide: A branch-and-bound program for QAPs in Matlab with the Newton-Bracketing method

MatQapNB is a MATLAB toolbox that implements a parallel branch-and-bound method using NewtBracket (the Newton bracketing method [4]) for its lower bounding procedure. It can solve small to medium scale Quadratic Assignment Problem (QAP) instances with dimension up to 30. MatQapNB was used in the numerical experiments on QAPs in the recent article “Solving challenging … Read more

Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient

We present PDLP, a practical first-order method for linear programming (LP) that can solve to the high levels of accuracy that are expected in traditional LP applications. In addition, it can scale to very large problems because its core operation is matrix-vector multiplications. PDLP is derived by applying the primal-dual hybrid gradient (PDHG) method, popularized … Read more

New complexity results and algorithms for min-max-min robust combinatorial optimization

In this work we investigate the min-max-min robust optimization problem applied to combinatorial problems with uncertain cost-vectors which are contained in a convex uncertainty set. The idea of the approach is to calculate a set of k feasible solutions which are worst-case optimal if in each possible scenario the best of the k solutions would … Read more

Markov Chain Sampling of Hidden Relay States for Economic Dispatch with Cascading Failures

Independent system operators (ISO) of electric power networks aim to dispatch electricity economically while maintaining system reliability. NERC (North America Electric Reliability Council) requires the transmission network to be (N-1)-secure, i.e., to have sufficient supply to satisfy demand in the event of the failure of any single resource in the network. Such a policy is … Read more

Robust Generalization despite Distribution Shift via Minimum Discriminating Information

Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use … Read more

A stochastic alternating balance k-means algorithm for fair clustering

In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement recommendations, the clustering outcome might discriminate against people across different demographic groups, leading to unfairness. A natural conflict occurs between the cost of clustering (in terms of distance to cluster centers) and the balance representation of all demographic groups … Read more