Using Multiple Reference Vectors and Objective Scaling in the Feasibility Pump

The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate … Read more

A single cut proximal bundle method for stochastic convex composite optimization

This paper considers optimization problems where the objective is the sum of a function given by an expectation and a closed convex composite function, and proposes stochastic composite proximal bundle (SCPB) methods for solving it. Complexity guarantees are established for them without requiring knowledge of parameters associated with the problem instance. Moreover, it is shown … Read more

Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution

This work characterizes the effect of depth on the optimization landscape of linear regression, showing that, despite their nonconvexity, deeper models have more desirable optimization landscape. We consider a robust and over-parameterized setting, where a subset of measurements are grossly corrupted with noise and the true linear model is captured via an $N$-layer linear neural … Read more

On optimally solving sub-tree scheduling for wireless sensor networks with partial coverage

Energy efficiency and balancing are very important issues from the perspective of increasing the lifetime of a wireless sensor network (WSN). In this study, we concentrate on energy balancing. Given a WSN, we consider the problem to minimize its total power consumption over consecutive time slots with respect to communication activities. Disjoint subsets of nodes … Read more

A Penalty Branch-and-Bound Method for Mixed-Integer Quadratic Bilevel Problems

We propose an algorithm for solving bilevel problems with mixed-integer convex-quadratic upper level as well as convex-quadratic and continuous lower level. The method is based on a classic branch-and-bound procedure, where branching is performed on the integer constraints and on the complementarity constraints resulting from the KKT reformulation of the lower-level problem. However, instead of … Read more

The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning

In this paper we study the split minimization problem that consists of two constrained minimization problems in two separate spaces that are connected via a linear operator that maps one space into the other. To handle the data of such a problem we develop a superiorization approach that can reach a feasible point with reduced … Read more

The exact worst-case convergence rate of the alternating direction method of multipliers

Recently, semidefinite programming performance estimation has been employed as a strong tool for the worst-case performance analysis of first order methods. In this paper, we derive new non-ergodic convergence rates for the alternating direction method of multipliers (ADMM) by using performance estimation. We give some examples which show the exactness of the given bounds. We … Read more

A Newton-CG based barrier method for finding a second-order stationary point of nonconvex conic optimization with complexity guarantees

In this paper we consider finding an approximate second-order stationary point (SOSP) of nonconvex conic optimization that minimizes a twice differentiable function over the intersection of an affine subspace and a convex cone. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier method for finding an $(\epsilon,\sqrt{\epsilon})$-SOSP of this problem. Our method is not … Read more

Computing an enclosure for multiobjective mixed-integer nonconvex optimization problems using piecewise linear relaxations

In this paper, a new method for computing an enclosure of the nondominated set of multiobjective mixed-integer problems without any convexity requirements is presented. In fact, our criterion space method makes use of piecewise linear relaxations in order to bypass the nonconvexity of the original problem. The method chooses adaptively which level of relaxation is … Read more