Stochastic Aspects of Dynamical Low-Rank Approximation in the Context of Machine Learning

The central challenges of today’s neural network architectures are the prohibitive memory footprint and the training costs associated with determining optimal weights and biases. A large portion of research in machine learning is therefore dedicated to constructing memory-efficient training methods. One promising approach is dynamical low-rank training (DLRT) which represents and trains parameters as a … Read more

Fast convergence of the primal-dual dynamical system and algorithms for a nonsmooth bilinearly coupled saddle point problem

This paper is devoted to study the convergence rates of a second-order dynamical system and its corresponding discretizations associated with a nonsmooth bilinearly coupled convex-concave saddle point problem. We derive the convergence rate of the primal-dual gap for the second-order dynamical system with asymptotically vanishing damping term. Based on the implicit discretization, we propose a … Read more

Model Construction for Convex-Constrained Derivative-Free Optimization

We develop a new approximation theory for linear and quadratic interpolation models, suitable for use in convex-constrained derivative-free optimization (DFO). Most existing model-based DFO methods for constrained problems assume the ability to construct sufficiently accurate approximations via interpolation, but the standard notions of accuracy (designed for unconstrained problems) may not be achievable by only sampling … Read more

Certified Constraint Propagation and Dual Proof Analysis in a Numerically Exact MIP Solver

This paper presents the integration of constraint propagation and dual proof analysis in an exact, roundoff-error-free MIP solver. The authors employ safe rounding methods to ensure that all results remain provably correct, while sacrificing as little computational performance as possible in comparison to a pure floating-point implementation. The study also addresses the adaptation of certification … Read more

Similarity-based Decomposition Algorithm for Two-stage Stochastic Scheduling

This paper presents a novel decomposition method for two-stage stochastic mixed-integer optimization problems. The algorithm builds upon the idea of similarity between finite sample sets to measure how similar the first-stage decisions are among the uncertainty realization scenarios. Using such a Similarity Index, the non-anticipative constraints are removed from the problem formulation so that the … Read more

Using Disjunctive Cuts in a Branch-and-Cut Method to Solve Convex Integer Nonlinear Bilevel Problems

We present a branch-and-cut method for solving convex integer nonlinear bilevel problems, i.e., bilevel models with nonlinear but convex objective functions and constraints in both the upper and the lower level. To this end, we generalize the idea of using disjunctive cuts to cut off integer-feasible but bilevel-infeasible points. These cuts can be obtained by … Read more

Scalable Projection-Free Optimization Methods via MultiRadial Duality Theory

Recent works have developed new projection-free first-order methods based on utilizing linesearches and normal vector computations to maintain feasibility. These oracles can be cheaper than orthogonal projection or linear optimization subroutines but have the drawback of requiring a known strictly feasible point to do these linesearches with respect to. In this work, we develop new … Read more

On the Out-of-Sample Performance of Stochastic Dynamic Programming and Model Predictive Control

Sample average approximation-based stochastic dynamic programming (SDP) and model predictive control (MPC) are two different methods for approaching multistage stochastic optimization. In this paper we investigate the conditions under which SDP may be outperformed by MPC. We show that, depending on the presence of concavity or convexity, MPC can be interpreted as solving a mean-constrained … Read more

A Unified Approach for Maximizing Continuous $\gamma$-weakly DR-submodular Functions

This paper presents a unified approach for maximizing continuous \(\gamma\)-weakly DR-submodular functions that encompasses a range of settings and oracle access types. Our approach includes a Frank-Wolfe type offline algorithm for both monotone and non-monotone functions, with different restrictions on the convex feasible region. We consider settings where the oracle provides access to either the … Read more

Neur2BiLO: Neural Bilevel Optimization

Bilevel optimization deals with nested problems in which a leader takes the first decision to minimize their objective function while accounting for a follower best-response reaction. Constrained bilevel problems with integer variables are particularly notorious for their hardness.  While exact solvers have been proposed for mixed-integer~linear bilevel optimization, they tend to scale poorly with problem … Read more