Mixed-Integer Optimization with Constraint Learning

We establish a broad methodological foundation for mixed-integer optimization with learned constraints. We propose an end-to-end pipeline for data-driven decision making in which constraints and objectives are directly learned from data using machine learning, and the trained models are embedded in an optimization formulation. We exploit the mixed-integer optimization-representability of many machine learning methods, including … Read more

Exact and Heuristic Solution Techniques for Mixed-Integer Quantile Minimization Problems

We consider mixed-integer linear quantile minimization problems that yield large-scale problems that are very hard to solve for real-world instances. We motivate the study of this problem class by two important real-world problems: a maintenance planning problem for electricity networks and a quantile-based variant of the classic portfolio optimization problem. For these problems, we develop … Read more

Quadratic Optimization Models for Balancing Preferential Access and Fairness: Formulations and Optimality Conditions

Published in INFORMS Journal on Computing. https://doi.org/10.1007/978-3-031-47859-8_26 Typically, within facility location problems, fairness is defined in terms of accessibility of users. However, for facilities perceived as undesirable by communities hosting them, fairness between the usage of facilities becomes especially important. Limited research exists on this notion of fairness. To close this gap, we develop a series … Read more

A Graph-based Decomposition Method for Convex Quadratic Optimization with Indicators

In this paper, we consider convex quadratic optimization problems with indicator variables when the matrix Q defining the quadratic term in the objective is sparse. We use a graphical representation of the support of Q, and show that if this graph is a path, then we can solve the associated problem in polynomial time. This … Read more

ADMM-based Unit and Time Decomposition for Price Arbitrage by Cooperative Price-Maker Electricity Storage Units

Decarbonization via the integration of renewables poses significant challenges for electric power systems, but also creates new market opportunities. Electric energy storage can take advantage of these opportunities while providing flexibility to power systems that can help address these challenges. We propose a solution method for the optimal control of multiple price-maker electric energy storage … Read more

Statistical Inference of Contextual Stochastic Optimization with Endogenous Uncertainty

This paper considers contextual stochastic optimization with endogenous uncertainty, where random outcomes depend on both contextual information and decisions. We analyze the statistical properties of solutions from two prominent approaches: predict-then-optimize (PTO), which first predicts a model between outcomes, contexts, and decisions, and then optimizes the downstream objective; and estimate- then-optimize (ETO), which directly estimates … Read more

An Improved Penalty Algorithm using Model Order Reduction for MIPDECO problems with partial observations

This work addresses optimal control problems governed by a linear time-dependent partial differential equation (PDE) as well as integer constraints on the control. Moreover, partial observations are assumed in the objective function. The resulting problem poses several numerical challenges due to the mixture of combinatorial aspects, induced by integer variables, and large scale linear algebra … Read more

Data-Driven Ranges of Near-Optimal Actions for Finite Markov Decision Processes

Markov decision process (MDP) models have been used to obtain non-stationary optimal decision rules in various applications, such as treatment planning in medical decision making. However, in practice, decision makers may prefer other strategies that are not statistically different from the optimal decision rules. To benefit from the decision makers’ expertise and provide flexibility in … Read more

Inexact bilevel stochastic gradient methods for constrained and unconstrained lower-level problems

Two-level stochastic optimization formulations have become instrumental in a number ofmachine learning contexts such as continual learning, neural architecture search, adversariallearning, and hyperparameter tuning. Practical stochastic bilevel optimization problemsbecome challenging in optimization or learning scenarios where the number of variables ishigh or there are constraints. In this paper, we introduce a bilevel stochastic gradient method … Read more

Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach

We study the Sparse Plus Low-Rank decomposition problem (SLR), which is the problem of decomposing a corrupted data matrix into a sparse matrix of perturbations plus a low-rank matrix containing the ground truth. SLR is a fundamental problem in Operations Research and Machine Learning which arises in various applications, including data compression, latent semantic indexing, … Read more