A Voronoi-Based Mixed-Integer Gauss-Newton Algorithm for MINLP Arising in Optimal Control

We present a new algorithm for addressing nonconvex Mixed-Integer Nonlinear Programs (MINLPs) where the cost function is of nonlinear least squares form. We exploit this structure by leveraging a Gauss-Newton quadratic approximation of the original MINLP, leading to the formulation of a Mixed-Integer Quadratic Program (MIQP), which can be solved efficiently. The integer solution of the … Read more

Improvements for Decomposition Based Methods Utilized in the Development of Multi-Scale Energy Systems

The optimal design of large-scale energy systems can be found by posing the problem as an integrated multi-period planning and scheduling mathematical programming problem. Due to the complexity of the accompanying mathematical programming problem decomposition techniques are often required but they to are plagued with converge issues. To address these issues we have derived a … Read more

Deep learning and hyperparameter optimization for assessing one’s eligibility for a subcutaneous implantable cardioverter-defibrillator

In cardiology, it is standard for patients suffering from ventricular arrhythmias (the leading cause of sudden cardiac death) belonging to high risk populations to be treated using Subcutaneous Implantable Cardioverter-Defibrillators (S-ICDs). S-ICDs carry a risk of so-called T Wave Over Sensing (TWOS), which can lead to inappropriate shocks with an inherent health risk. For this … Read more

A Consensus-Based Alternating Direction Method for Mixed-Integer and PDE-Constrained Gas Transport Problems

We consider dynamic gas transport optimization problems, which lead to large-scale and nonconvex mixed-integer nonlinear optimization problems (MINLPs) on graphs. Usually, the resulting instances are too challenging to be solved by state-of-the-art MINLP solvers. In this paper, we use graph decompositions to obtain multiple optimization problems on smaller blocks, which can be solved in parallel … Read more

Compromise Policy for Multi-stage Stochastic Linear Programming: Variance and Bias Reduction

This paper focuses on algorithms for multi-stage stochastic linear programming (MSLP). We propose an ensemble method named the “compromise policy”, which not only reduces the variance of the function approximation but also reduces the bias of the estimated optimal value. It provides a tight lower bound estimate with a confidence interval. By exploiting parallel computing, … Read more

Sparse PCA With Multiple Components

Sparse Principal Component Analysis (sPCA) is a cardinal technique for obtaining combinations of features, or principal components (PCs), that explain the variance of high-dimensional datasets in an interpretable manner. This involves solving a sparsity and orthogonality-constrained convex maximization problem, which is extremely computationally challenging. Most existing works address sparse PCA via methods—such as iteratively computing … Read more

Computational complexity of decomposing a symmetric matrix as a sum of positive semidefinite and diagonal matrices

We study several variants of decomposing a symmetric matrix into a sum of a low-rank positive semidefinite matrix and a diagonal matrix. Such decompositions have applications in factor analysis and they have been studied for many decades. On the one hand, we prove that when the rank of the positive semidefinite matrix in the decomposition … Read more

A Successive Linear Relaxation Method for MINLPs with Multivariate Lipschitz Continuous Nonlinearities

We present a novel method for mixed-integer optimization problems with multivariate and Lipschitz continuous nonlinearities. In particular, we do not assume that the nonlinear constraints are explicitly given but that we can only evaluate them and that we know their global Lipschitz constants. The algorithm is a successive linear relaxation method in which we alternate … Read more

Superiorization as a novel strategy for linearly constrained inverse radiotherapy treatment planning

Objective: We apply the superiorization methodology to the intensity-modulated radiation therapy (IMRT) treatment planning problem. In superiorization, linear voxel dose inequality constraints are the fundamental modeling tool within which a feasibility-seeking projection algorithm will seek a feasible point. This algorithm is then perturbed with gradient descent steps to reduce a nonlinear objective function. Approach: Within … Read more

Cutting-plane algorithm for sparse estimation of the Cox proportional-hazards model

Survival analysis is a family of statistical methods for analyzing event occurrence times. In this paper, we address the mixed-integer optimization approach to sparse estimation of the Cox proportional-hazards model for survival analysis. Specifically, we propose a high-performance cutting-plane algorithm based on reformulation of bilevel optimization for sparse estimation. This algorithm solves the upper-level problem … Read more