Real-Time Optimization Strategies for Building Systems

We propose real-time optimization strategies for energy management in building systems. We have found that exploiting building-wide multivariable interactions between CO2 and humidity, pressure, occupancy, and temperature leads to significant reductions of energy intensity compared with traditional strategies. Our analysis indicates that it is possible to obtain energy savings of more than 50% compared with … Read more

HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performance-destroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms, and implementation that SGD can be implemented *without … Read more

Optimal Design of Electrical Machines: Mathematical Programming Formulations

The optimal design of electrical machines can be mathematically modeled as a mixed-integer nonlinear optimization problem. We present six variants of such a problem, and we show, through extensive computational experiments, that, even though they are mathematically equivalent, the differences in the formulations may have an impact on the numerical performances of a local optimization … Read more

Multi-level Verticality Optimization: Concept, Strategies, and Drawing Scheme

In traditional multi-level graph drawing – known as Sugiyama’s framework – the number of crossings is considered one of the most important goals. Herein, we propose the alternative concept of optimizing the verticality of the drawn edges. We formally specify the problem, discuss its relative merits, and show that drawings that are good w.r.t. verticality … Read more

Efficient Direct Multiple Shooting for Nonlinear Model Predictive Control on Long Horizons

We address direct multiple shooting based algorithms for nonlinear model predictive control, with a focus on problems with long prediction horizons. We describe different efficient multiple shooting variants with a computational effort that is only linear in the horizon length. Proposed techniques comprise structure exploiting linear algebra on the one hand, and approximation of derivative … Read more

Optimization and homotopy methods for the Gibbs free energy of magmatic mixtures

In this paper we consider a mathematical model for magmatic mixtures based on the Gibbs free energy. Different reformulations of the problem are presented and some theoretical results about the existence and number of solutions are derived. Finally, two homotopy methods and a global optimization one are introduced and computationally tested. One of the homotopy … Read more

A stochastic multiscale model for electricity generation capacity expansion

Long-term planning for electric power systems, or capacity expansion, has traditionally been modeled using simplified models or heuristics to approximate the short-term dynamics. However, current trends such as increasing penetration of intermittent renewable generation and increased demand response requires a coupling of both the long and short term dynamics. We present an efficient method for … Read more

The Reliable Hub-and-spoke Design Problem: Models and Algorithms

This paper presents a study on reliable single and multiple allocation hub-and-spoke network design problems where disruptions at hubs and the resulting hub unavailability can be mitigated by backup hubs and alternative routes. It builds nonlinear mixed integer programming models and presents linearized formulas. To solve those difficult problems, Lagrangian relaxation and Branch-and-Bound methods are … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

DIFFERENCE FILTER PRECONDITIONING FOR LARGE COVARIANCE MATRICES

In many statistical applications one must solve linear systems corresponding to large, dense, and possibly irregularly structured covariance matrices. These matrices are often ill- conditioned; for example, the condition number increases at least linearly with respect to the size of the matrix when observations of a random process are obtained from a xed domain. This … Read more