A numerical study of transformed mixed-integer optimal control problems

Time transformation is a ubiquitous tool in theoretical sciences, especially in physics. It can also be used to transform switched optimal con trol problems into control problems with a fixed switching order and purely continuous decisions. This approach is known either as enhanced time transformation, time-scaling, or switching time optimization (STO) for mixed-integer optimal control. … Read more

Stability in the the Hospitals / Residents problem with Couples and Ties: Mathematical models and computational studies

In the well-known Hospitals/Residents problem (HR), the objective is to find a stable matching of doctors (or residents) to hospitals based on their preference lists. In this paper, we study HRCT, the extension of HR in which doctors are allowed to apply in couples, and in which doctors and hospitals can include ties in their … Read more

Optimizing the Response for Arctic Mass Rescue Events

We study a model that optimizes the response to a mass rescue event in Arctic Alaska. The model contains dynamic logistics decisions for a large-scale maritime evacuation with the objectives of minimizing the impact of the event on the evacuees and the average evacuation time. Our proposed optimization model considers two interacting networks – the … Read more

The Star Degree Centrality Problem: A Decomposition Approach

We consider the problem of identifying the induced star with the largest cardinality open neighborhood in a graph. This problem, also known as the star degree centrality (SDC) problem, has been shown to be 𝒩𝒫-complete. In this work, we first propose a new integer programming (IP) formulation, which has a fewer number of constraints and … Read more

A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes

This paper presents a proximal bundle variant, namely, the relaxed proximal bundle (RPB) method, for solving convex nonsmooth composite optimization problems. Like other proximal bundle variants, RPB solves a sequence of prox bundle subproblems whose objective functions are regularized composite cutting-plane models. Moreover, RPB uses a novel condition to decide whether to perform a serious … Read more

A note on the Lasserre hierarchy for different formulations of the maximum independent set problem

In this note, we consider several polynomial optimization formulations of the max- imum independent set problem and the use of the Lasserre hierarchy with these different formulations. We demonstrate using computational experiments that the choice of formulation may have a significant impact on the resulting bounds. We also provide theoretical justifications for the observed behavior. … Read more

Projected-Search Methods for Bound-Constrained Optimization

Projected-search methods for bound-constrained minimization are based on performing a line search along a continuous piecewise-linear path obtained by projecting a search direction onto the feasible region. A potential benefit of a projected-search method is that many changes to the active set can be made at the cost of computing a single search direction. As … Read more

Polyhedral Approximation Strategies in Nonconvex Mixed-Integer Nonlinear Programming

Different versions of polyhedral outer approximation is used by many algorithms for mixed-integer nonlinear programming (MINLP). While it has been demonstrated that such methods work well for convex MINLP, extending them to solve also nonconvex problems has been challenging. One solver based on outer linearization of the nonlinear feasible set of MINLP problems is the … Read more

Chi-Optimization – Novel Approach for Optimization under Uncertainty with Application on Forecast- and Decision Problems

We propose a novel approach for optimization and decision problems under uncertainty. We first describe it for stochastic optimization under distributional ambiguity with and without data for the random parameter. Distributional ambiguity means that an entire family $P$ of distributions is considered instead of a single one. For our approach, which avoids non-verifiable assumptions and … Read more

Continuous Cubic Formulations for Cluster Detection Problems in Networks

The celebrated Motzkin-Straus formulation for the maximum clique problem provides a nontrivial characterization of the clique number of a graph in terms of the maximum value of a nonconvex quadratic function over a standard simplex. It was originally developed as a way of proving Tur\'{a}n’s theorem in graph theory, but was later used to develop … Read more