Strong Duality and Minimal Representations for Cone Optimization

The elegant results for strong duality and strict complementarity for linear programming, \LP, can fail for cone programming over nonpolyhedral cones. One can have: unattained optimal values; nonzero duality gaps; and no primal-dual optimal pair that satisfies strict complementarity. This failure is tied to the nonclosure of sums of nonpolyhedral closed cones. We take a … Read more

Semi-infinite programming, duality, discretization and optimality conditions

The aim of this paper is to give a survey of some basic theory of semi-infinite programming. In particular, we discuss various approaches to derivations of duality, discretization and first and second order optimality conditions. Some of the surveyed results are well known while others seem to be less noticed in that area of research. … Read more

Duality of ellipsoidal approximations via semi-infinite programming

In this work, we develop duality of the minimum volume circumscribed ellipsoid and the maximum volume inscribed ellipsoid problems. We present a unified treatment of both problems using convex semi–infinite programming. We establish the known duality relationship between the minimum volume circumscribed ellipsoid problem and the optimal experimental design problem in statistics. The duality results … Read more

Probing the Pareto frontier for basis pursuit solutions

The basis pursuit problem seeks a minimum one-norm solution of an underdetermined least-squares problem. Basis pursuit denoise (BPDN) fits the least-squares problem only approximately, and a single parameter determines a curve that traces the optimal trade-off between the least-squares fit and the one-norm of the solution. We prove that this curve is convex and continuously … Read more

Duality in quasi-newton methods and new variational characterizations of the DFP and BFGS updates

It is known that quasi-Newton updates can be characterized by variational means, sometimes in more than one way. This paper has two main goals. We first formulate variational problems appearing in quasi-Newton methods within the space of symmetric matrices. This simplies both their formulations and their subsequent solutions. We then construct, for the first time, … Read more

Exact duality for optimization over symmetric cones

We present a strong duality theory for optimization problems over symmetric cones without assuming any constraint qualification. We show important complexity implications of the result to semidefinite and second order conic optimization. The result is an application of Borwein and Wolkowicz’s facial reduction procedure to express the minimal cone. We use Pataki’s simplified analysis and … Read more

Convex duality and entropy-based moment closure: Characterizing degenerate densities

A common method for constructing a function from a finite set of moments is to solve a constrained minimization problem. The idea is to find, among all functions with the given moments, that function which minimizes a physically motivated, strictly convex functional. In the kinetic theory of gases, this functional is the kinetic entropy; the … Read more

A reduced duality gaps simplex algorithm for linear programming

In this paper we devise a new version of primal simplex algorithms in which the classical iteration is decomposed two basic operations: the move and the pivot. The move operation decreases the primal objective value and the pivot operation increases the dual objective. We define the condition number of the pivot operation and present a … Read more

Duality for Mixed-Integer Linear Programs

This paper is a survey of and some minor extensions to the theory of duality for mixed-integer linear programs. The theory of duality for linear programs is well-developed and has been extremely successful in both theory and practice. Much of this broad framework can be extended to MILPs in principle, but this has proven largely … Read more

Recursive Construction of Optimal Self-Concordant Barriers for Homogeneous Cones

In this paper, we give a recursive formula for optimal dual barrier functions on homogeneous cones. This is done in a way similar to the primal construction of Guler and Tuncel by means of the dual Siegel cone construction of Rothaus. We use invariance of the primal barrier function with respect to a transitive subgroup … Read more