Level Bundle Methods for oracles with on-demand accuracy

For nonsmooth convex optimization, we consider level bundle methods built using an oracle that computes values for the objective function and a subgradient at any given feasible point. For the problems of interest, the exact oracle information is computable, but difficult to obtain. In order to save computational effort the oracle can provide estimations with … Read more

Logarithmic barriers for sparse matrix cones

Algorithms are presented for evaluating gradients and Hessians of logarithmic barrier functions for two types of convex cones: the cone of positive semidefinite matrices with a given sparsity pattern, and its dual cone, the cone of sparse matrices with the same pattern that have a positive semidefinite completion. Efficient large-scale algorithms for evaluating these barriers … Read more

On optimizing the sum of the Rayleigh quotient and the generalized Rayleigh quotient on the unit sphere

Given symmetric matrices $B,D\in R^{n\times n}$ and a symmetric positive definite matrix $W\in R^{n\times n},$ maximizing the sum of the Rayleigh quotient $x^T Dx$ and the generalized Rayleigh quotient $x^T Bx/x^TWx$ on the unit sphere not only is of mathematical interest in its own right, but also finds applications in practice. In this paper, we … Read more

Customizing the Solution Process of COIN-OR’s Linear Solvers with Python

Implementations of the Simplex method differ only in very specific aspects such as the pivot rule. Similarly, most relaxation methods for mixed-integer programming differ only in the type of cuts and the exploration of the search tree. Implementing instances of those frameworks would therefore be more efficient if linear and mixed-integer programming solvers let users … Read more

On the evaluation complexity of cubic regularization methods for potentially rank-deficient nonlinear least-squares problems and its relevance to constrained nonlinear optimization

We propose a new termination criteria suitable for potentially singular, zero or non-zero residual, least-squares problems, with which cubic regularization variants take at most $\mathcal{O}(\epsilon^{-3/2})$ residual- and Jacobian-evaluations to drive either the Euclidean norm of the residual or its gradient below $\epsilon$; this is the best-known bound for potentially singular nonlinear least-squares problems. We then … Read more

Reweighted $\ell_1hBcMinimization for Sparse Solutions to Underdetermined Linear Systems

Numerical experiments have indicated that the reweighted $\ell_1$-minimization performs exceptionally well in locating sparse solutions of underdetermined linear systems of equations. Thus it is important to carry out a further investigation of this class of methods. In this paper, we point out that reweighted $\ell_1$-methods are intrinsically associated with the minimization of the so-called merit … Read more

On Relaxing the Mangasarian-Fromovitz Constraint Qualification

For the classical nonlinear program two new relaxations of the Mangasarian-Fromovitz constraint qualification are discussed and their relationship with some standard constraint qualifications is examined. In particular, we establish the equivalence of one of these constraint qualifications with the recently suggested by Andreani et al. Constant rank of the subspace component constraint qualification. As an … Read more

Irreducible elements of the copositive cone

An element $A$ of the $n \times n$ copositive cone $\copos{n}$ is called irreducible with respect to the nonnegative cone~$\NNM{n}$ if it cannot be written as a nontrivial sum $A = C+N$ of a copositive matrix $C$ and an elementwise nonnegative matrix $N$. This property was studied by Baumert~\cite{Baumert65} who gave a characterisation of irreducible … Read more

Global convergence and the Powell singular function

The Powell singular function was introduced 1962 by M.J.D. Powell as an unconstrained optimization problem. The function is also used as nonlinear least squares problem and system of nonlinear equations. The function is a classic test function included in collections of test problems in optimization as well as an example problem in text books. In … Read more

Efficient Cardinality/Mean-Variance Portfolios

A number of variants of the classical Markowitz mean-variance optimization model for portfolio selection have been investigated to render it more realistic. Recently, it has been studied the imposition of a cardinality constraint, setting an upper bound on the number of active positions taken in the portfolio, in an attempt to improve its performance and … Read more