Calmness of a perturbed Cournot Oligopoly Game with nonsmooth cost functions

This article deals with the calmness of a solution map of a Cournot Oligopoly Game with nonsmooth cost functions. The fact that the cost functions are not supposed to be differentiable allows for considering cases where some firms have diferent units of production, which have diferent marginal costs. In order to obtain results about the … Read more

The block mutual coherence property condition for signal recovery

Compressed sensing shows that a sparse signal can stably be recovered from incomplete linear measurements. But, in practical applications, some signals have additional structure, where the nonzero elements arise in some blocks. We call such signals as block-sparse signals. In this paper, the $\ell_2/\ell_1-\alpha\ell_2$ minimization method for the stable recovery of block-sparse signals is investigated. … Read more

Linear Programming and Community Detection

The problem of community detection with two equal-sized communities is closely related to the minimum graph bisection problem over certain random graph models. In the stochastic block model distribution over networks with community structure, a well-known semidefinite programming (SDP) relaxation of the minimum bisection problem recovers the underlying communities whenever possible. Motivated by their superior … Read more

A Personalized Switched Systems Approach for the Optimal Control of Ventricular Assist Devices based on Atrioventricular Plane Displacement

Objective: A promising treatment for congestive heart failure is the implementation of a left ventricular assist device (LVAD) that works as a mechanical pump. Modern LVADs work with adjustable constant rotor speed and provide therefore continuous blood flow; however, recently undertaken efforts try to mimic pulsatile blood flow by oscillating the pump speed. This work … Read more

Consistent Second-Order Conic Integer Programming for Learning Bayesian Networks

Bayesian Networks (BNs) represent conditional probability relations among a set of random variables (nodes) in the form of a directed acyclic graph (DAG), and have found diverse applications in knowledge discovery. We study the problem of learning the sparse DAG structure of a BN from continuous observational data. The central problem can be modeled as … Read more

A decision theoretic approach for waveform design in joint radar communications applications

In this paper, we develop a decision theoretic approach for radar waveform design to maximize the joint radar communications performance in spectral coexistence. Specifically, we develop an adaptive waveform design approach by posing the design problem as a partially observable Markov decision process (POMDP), which leads to a hard optimization problem. We extend an approximate … Read more

Solving nonlinear systems of equations via spectral residual methods: stepsize selection and applications

Spectral residual methods are derivative-free and low-cost per iteration procedures for solving nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual vector is used as the search direction and choosing the steplength has a … Read more

Reliable Frequency Regulation through Vehicle-to-Grid: Encoding Legislation with Robust Constraints

Problem definition: Vehicle-to-grid increases the low utilization rate of privately owned electric vehicles by making their batteries available to electricity grids. We formulate a robust optimization problem that maximizes a vehicle owner’s expected profit from selling primary frequency regulation to the grid and guarantees that market commitments are met at all times for all frequency … Read more

A tactical maintenance optimization model for multiple interconnected energy production systems

Multiple interconnected energy production systems are a common solution to satisfy the energy demand of industrial processes. Such energy demand is usually the combination of various energy types such as heat and electricity. This implies the installation of different technologies able to produce one or multiple energy types, to satisfy all energy needs. However, multiple … Read more

Solving Large-Scale Sparse PCA to Certifiable (Near) Optimality

Sparse principal component analysis (PCA) is a popular dimensionality reduction technique for obtaining principal components which are linear combinations of a small subset of the original features. Existing approaches cannot supply certifiably optimal principal components with more than $p=100s$ of variables. By reformulating sparse PCA as a convex mixed-integer semidefinite optimization problem, we design a … Read more