Optimal time-and-level-of-use price setting for an energy retailer

This paper presents a novel price setting optimization problem for an energy retailer in the smart grid. In this framework the retailer buys energy from multiple generators via bilateral contracts, and sells it to a population of smart homes using Time-and-Level-of-Use prices (TLOU). TLOU is an energy price structure recently introduced in the literature, where … Read more

Online matrix factorization for Markovian data and applications to Network Dictionary Learning

Online Matrix Factorization (OMF) is a fundamental tool for dictionary learning problems, giving an approximate representation of complex data sets in terms of a reduced number of extracted features. Convergence guarantees for most of the OMF algorithms in the literature assume independence between data matrices, and the case of a dependent data stream remains largely … Read more

Transmission Switching Under Wind Uncertainty Using Linear Decision Rules

Increasing penetration of wind and renewable generation poses significant challenges to the power system operations and reliability. This paper considers the real-time optimal transmission switching (OTS) problem for determining the generation dispatch and network topology that can account for uncertain energy resources. To efficiently solve the resultant two-stage stochastic program, we propose a tractable linear … Read more

Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally Robust Optimization

We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator—that is, a measurable function of the observation—and a fictitious adversary choosing a prior—that is, … Read more

Optimization and Validation of Pumping System Design and Operation for Water Supply in High-Rise Buildings

The application of mathematical optimization methods provides the capacity to increase the energy efficiency and to lower the investment costs of technical systems, considerably. We present a system approach for the optimization of the design and operation of pumping systems and exemplify it by applying it to the water supply of high-rise buildings. The underlying … Read more

On the Cluster-aware Supervised Learning (CluSL): Frameworks, Convergent Algorithms, and Applications

This paper proposes a cluster-aware supervised learning (CluSL) framework, which integrates the clustering analysis with supervised learning (SL). The objective of CluSL is to simultaneously find the best clusters of the data points and minimize the sum of loss functions within each cluster. This framework has many potential applications in healthcare, operations management, manufacturing, and … Read more

Query Batching Optimization in Database Systems

Techniques based on sharing data and computation among queries have been an active research topic in database systems. While work in this area developed algorithms and systems that are shown to be effective, there is a lack of rigorous modeling and theoretical study for query processing and optimization. Query batching in database systems has strong … Read more

Customized transition towards smart homes: A fast framework for economic analyses

Smart homes allow the optimization of energy usage so that households can reduce electricity bills, or even make profits. By 2020, 20% of all households in Europe and 35% in North America will be expected to become smart homes. Although smart homes seem to be the future for homes, many customers have the perception that … Read more

Spectral Gap Optimization of Divergence Type Diffusion Operators

In this paper, we address the problem of maximizing the spectral gap of a divergence type diffusion operator. Our main application of interest is characterizing the distribution of a swarm of agents that evolve on a bounded domain in Rn according to a Markov process. A subclass of the divergence type operators that we introduce … Read more

Stochastic DC Optimal Power Flow With Reserve Saturation

We propose an optimization framework for stochastic optimal power flow with uncertain loads and renewable generator capacity. Our model follows previous work in assuming that generator outputs respond to load imbalances according to an affine control policy, but introduces a model of saturation of generator reserves by assuming that when a generator’s target level hits … Read more