A Newton-bracketing method for a simple conic optimization problem

For the Lagrangian-DNN relaxation of quadratic optimization problems (QOPs), we propose a Newton-bracketing method to improve the performance of the bisection-projection method implemented in BBCPOP [to appear in ACM Tran. Softw., 2019]. The relaxation problem is converted into the problem of finding the largest zero $y^*$ of a continuously differentiable (except at $y^*$) convex function … Read more

A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization.

A new primal-dual interior-point algorithm applicable to nonsymmetric conic optimization is proposed. It is a generalization of the famous algorithm suggested by Nesterov and Todd for the symmetric conic case, and uses primal-dual scalings for nonsymmetric cones proposed by Tuncel. We specialize Tuncel’s primal-dual scalings for the important case of 3 dimensional exponential-cones, resulting in … Read more

Improved convergence analysis of Lasserre’s measure-based upper bounds for polynomial minimization on compact sets

We consider the problem of computing the minimum value of a polynomial f over a compact set K⊆R^n, which can be reformulated as finding a probability measure ν on K minimizing the expected value of f over K. Lasserre showed that it suffices to consider such measures of the form ν=qμ, where q is a … Read more

Equivalences among the chi measure, Hoffman constant, and Renegar’s distance to ill-posedness

We show the equivalence among the following three condition measures of a full column rank matrix $A$: the chi measure, the signed Hoffman constant, and the signed distance to ill-posedness. The latter two measures are constructed via suitable collections of matrices obtained by flipping the signs of some rows of $A$. Our results provide a … Read more

Consensus-Based Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition (DWD) is a classical algorithm for solving large-scale linear programs whose constraint matrix involves a set of independent blocks coupled with a set of linking rows. The algorithm decomposes such a model into a master problem and a set of independent subproblems that can be solved in a distributed manner. In a typical … Read more

Detection and Transformation of Second-Order Cone Programming Problems in a General-Purpose Algebraic Modeling Language

Diverse forms of nonlinear optimization problems can be recast to the special form of second-order cone problems (SOCPs), permitting a wider variety of highly effective solvers to be applied. Popular solvers assume, however, that the necessary transformations to required canonical forms have already been identified and carried out. We describe a general approach to the … Read more

Polyhedral approximations of the semidefinite cone and their application

We develop techniques to construct a series of sparse polyhedral approximations of the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and Yoshise (2018), we propose a simple expansion of SD bases so as to keep the sparsity of the matrices composing it. We prove that the polyhedral approximation using our expanded … Read more

Stability Analysis for a Class of Sparse Optimization Problems

The sparse optimization problems arise in many areas of science and engineering, such as compressed sensing, image processing, statistical and machine learning. The $\ell_{0}$-minimization problem is one of such optimization problems, which is typically used to deal with signal recovery. The $\ell_{1}$-minimization method is one of the plausible approaches for solving the $\ell_{0}$-minimization problems, and … Read more

A convex relaxation to compute the nearest structured rank deficient matrix

Given an affine space of matrices L and a matrix \theta in L, consider the problem of finding the closest rank deficient matrix to \theta on L with respect to the Frobenius norm. This is a nonconvex problem with several applications in estimation problems. We introduce a novel semidefinite programming (SDP) relaxation, and we show … Read more

Convergence analysis of a Lasserre hierarchy of upper bounds for polynomial minimization on the sphere

We study the convergence rate of a hierarchy of upper bounds for polynomial minimization prob-lems, proposed by Lasserre [SIAM J. Optim.21(3) (2011), pp.864-885], for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r of the hierarchy is defined as the minimal expected value of the polynomial over … Read more