On regularized structure exploiting Quasi-Newton methods for ill-posed problems

Inverse problems are inherently ill-posed, leading standard optimization techniques to fail and necessitating the use of regularization. This paper introduces a regularized, structure-exploiting Powell-Symmetric-Broyden method under modified secant conditions for solving ill-posed inverse problems in both infinite dimensional and finite dimensional settings. Our approach integrates regularization and structure exploitation directly within the Quasi-Newton framework, leveraging … Read more

Efficient search strategies for constrained multiobjective blackbox optimization

Multiobjective blackbox optimization deals with problems where the objective and constraint functions are the outputs of a numerical simulation. In this context, no derivatives are available, nor can they be approximated by finite differences, which precludes the use of classical gradient-based techniques. The DMulti-MADS algorithm implements a state-of-the-art direct search procedure for multiobjective blackbox optimization … Read more

New Algorithms for maximizing the difference of convex functions

Maximizing the difference of 2 convex functions over a convex feasible set (the so called DCA problem) is a hard problem. There is a large number of publications addressing this problem. Many of them are variations of widely used DCA algorithm [20]. The success of this algorithm to reach a good approximation of a global … Read more

Optimistic Noise-Aware Sequential Quadratic Programming for Equality Constrained Optimization with Rank-Deficient Jacobians

We propose and analyze a sequential quadratic programming algorithm for minimizing a noisy nonlinear smooth function subject to noisy nonlinear smooth equality constraints. The algorithm uses a step decomposition strategy and, as a result, is robust to potential rank-deficiency in the constraints, allows for two different step size strategies, and has an early stopping mechanism. … Read more

qpBAMM: a parallelizable ADMM approach for block-structured quadratic programs

Block-structured quadratic programs (QPs) frequently arise in the context of the direct approach to solving optimal control problems. For successful application of direct optimal control algorithms to many real-world problems it is paramount that these QPs can be solved efficiently and reliably. Besides interior-point methods and active-set methods, ADMM-based quadratic programming approaches have gained popularity. … Read more

NonOpt: Nonconvex, Nonsmooth Optimizer

NonOpt, a C++ software package for minimizing locally Lipschitz objective functions, is presented. The software is intended primarily for minimizing objective functions that are nonconvex and/or nonsmooth. The package has implementations of two main algorithmic strategies: a gradient-sampling and a proximal-bundle method. Each algorithmic strategy can employ quasi-Newton techniques for accelerating convergence in practice. The … Read more

Sequential Rounding in Mixed-Integer Model Predictive Control

This paper interfaces combinatorial integral approximation strategies with the inherent robustness properties of conventional model predictive control with stabilizing terminal conditions to establish practical asymptotic stability results for finite-control set and mixed-integer model predictive control. We examine the impact of sequential control rounding on the closed-loop performance in terms of stability and optimality. Sum-up rounding … Read more

The Least Singular Value Function in Variational Analysis

Metric regularity is among the central concepts of nonlinear and variational analysis, constrained optimization, and their numerous applications. However, met- ric regularity can be elusive for some important ill-posed classes of problems includ- ing polynomial equations, parametric variational systems, smooth reformulations of complementarity systems with degenerate solutions, etc. The study of stability issues for such … Read more

Optimal Control of Semilinear Graphon Systems

Controlling the dynamics of large-scale networks is essential for a macroscopic reduction of overall consumption and losses in the context of energy supply, finance, logistics, and mobility. We investigate the optimal control of semilinear dynamical systems on asymptotically infinite networks, using the notion of graphons. Graphons represent a limit object of a converging graph sequence … Read more

Obscured by terminology: Hidden parallels in direct methods for open-loop optimal control

Active research on optimal control methods comprises the developments of research groups from various fields, including control, mathematics, and process systems engineering. Although there is a consensus on the classification of the main solution methods, different terms are often used for the same method. For example, solving optimal control problems with control discretization and embedded … Read more