NonOpt: Nonconvex, Nonsmooth Optimizer

NonOpt, a C++ software package for minimizing locally Lipschitz objective functions, is presented. The software is intended primarily for minimizing objective functions that are nonconvex and/or nonsmooth. The package has implementations of two main algorithmic strategies: a gradient-sampling and a proximal-bundle method. Each algorithmic strategy can employ quasi-Newton techniques for accelerating convergence in practice. The … Read more

Rounding in Mixed-Integer Model Predictive Control

This paper interfaces combinatorial integral approximation strategies with the inherent robustness properties of conventional model predictive control with stabilizing terminal conditions. We deduce practical stability results for finite-control set and mixed-integer model predictive control and investigate the evolution of the closed-loop system in the presence of control rounding to draw conclusions about deviation from optimality. … Read more

The Least Singular Value Function in Variational Analysis

Metric regularity is among the central concepts of nonlinear and variational analysis, constrained optimization, and their numerous applications. However, met- ric regularity can be elusive for some important ill-posed classes of problems includ- ing polynomial equations, parametric variational systems, smooth reformulations of complementarity systems with degenerate solutions, etc. The study of stability issues for such … Read more

Optimal Control of Semilinear Graphon Systems

Controlling the dynamics of large-scale networks is essential for a macroscopic reduction of overall consumption and losses in the context of energy supply, finance, logistics, and mobility. We investigate the optimal control of semilinear dynamical systems on asymptotically infinite networks, using the notion of graphons. Graphons represent a limit object of a converging graph sequence … Read more

Obscured by terminology: Hidden parallels in direct methods for open-loop optimal control

Active research on optimal control methods comprises the developments of research groups from various fields, including control, mathematics, and process systems engineering. Although there is a consensus on the classification of the main solution methods, different terms are often used for the same method. For example, solving optimal control problems with control discretization and embedded … Read more

Integer Control Approximations for Graphon Dynamical Systems

Graphons generalize graphs and define a limit object of a converging graph sequence. The notion of graphons allows for a generic representation of coupled network dynamical systems. We are interested in approximating integer controls for graphon dynamical systems. To this end, we apply a decomposition approach comprised of a relaxation and a reconstruction step. We … Read more

A Rank-One-Update Method for the Training of Support Vector Machines

This paper considers convex quadratic programs associated with the training of support vector machines (SVM). Exploiting the special structure of the SVM problem a new type of active set method with long cycles and stable rank-one-updates is proposed and tested (CMU: cycling method with updates). The structure of the problem allows for a repeated simple … Read more

A Universally Optimal Primal-Dual Method for Minimizing Heterogeneous Compositions

This paper proposes a universal, optimal algorithm for convex minimization problems of the composite form $g_0(x)+h(g_1(x),\dots, g_m(x)) + u(x)$. We allow each $g_j$ to independently range from being nonsmooth Lipschitz to smooth, from convex to strongly convex, described by notions of H\”older continuous gradients and uniform convexity. Note that, although the objective is built from … Read more

On Sum-Rules for Second-Order Contingent Derivatives

We are concerned with contingent derivatives and their second-order counterparts (introduced by Ngai et al.) of set-valued mappings. Special attention is given to the development of new sum-rules for second-order contingent derivatives. To be precise, we want to find conditions under which the second-order contingent derivative of the sum of a smooth and a set-valued … Read more

Spherical Support Vector Machine for Interval-Valued Data

In this work we propose a generalization of the Spherical Support Vector Machine method, in which the separator is a sphere, applied to Interval-valued data. This type of data belongs to a more general class, known as Symbolic Data, for which features are described by sets, intervals or histograms instead of classic arrays. This paradigm … Read more