A Two-level ADMM Algorithm for AC OPF with Convergence Guarantees

This paper proposes a two-level distributed algorithmic framework for solving the AC optimal power flow (OPF) problem with convergence guarantees. The presence of highly nonconvex constraints in OPF poses significant challenges to distributed algorithms based on the alternating direction method of multipliers (ADMM). In particular, convergence is not provably guaranteed for nonconvex network optimization problems … Read more

On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees

This paper discusses the use of a stopping criterion based on the scaling of the Karush-Kuhn-Tucker (KKT) conditions by the norm of the approximate Lagrange multiplier in the ALGENCAN implementation of a safeguarded augmented Lagrangian method. Such stopping criterion is already used in several nonlinear programming solvers, but it has not yet been considered in … Read more

A unifying framework for the analysis of projection-free first-order methods under a sufficient slope condition

The analysis of projection-free first order methods is often complicated by the presence of different kinds of “good” and “bad” steps. In this article, we propose a unifying framework for projection-free methods, aiming to simplify the converge analysis by getting rid of such a distinction between steps. The main tool employed in our framework is … Read more

Learning Dynamical Systems with Side Information

We present a mathematical and computational framework for the problem of learning a dynamical system from noisy observations of a few trajectories and subject to side information. Side information is any knowledge we might have about the dynamical system we would like to learn besides trajectory data. It is typically inferred from domain-specific knowledge or … Read more

Complexity Aspects of Local Minima and Related Notions

We consider the notions of (i) critical points, (ii) second-order points, (iii) local minima, and (iv) strict local minima for multivariate polynomials. For each type of point, and as a function of the degree of the polynomial, we study the complexity of deciding (1) if a given point is of that type, and (2) if … Read more

Iteration-complexity of a proximal augmented Lagrangian method for solving nonconvex composite optimization problems with nonlinear convex constraints

This paper proposes and analyzes a proximal augmented Lagrangian (NL-IAPIAL) method for solving smooth nonconvex composite optimization problems with nonlinear K-convex constraints, i.e., the constraints are convex with respect to the order given by a closed convex cone K. Each NL-IAPIAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite … Read more

On the Complexity of Finding a Local Minimizer of a Quadratic Function over a Polytope

We show that unless P=NP, there cannot be a polynomial-time algorithm that finds a point within Euclidean distance $c^n$ (for any constant $c \ge 0$) of a local minimizer of an $n$-variate quadratic function over a polytope. This result (even with $c=0$) answers a question of Pardalos and Vavasis that appeared in 1992 on a … Read more

Globally convergent Newton-type methods for multiobjective optimization

We propose two Newton-type methods for solving (possibly) nonconvex unconstrained multiobjective optimization problems. The first is directly inspired by the Newton method designed to solve convex problems, whereas  the second uses  second-order information of the objective functions with ingredients of the steepest descent method.  One of the key points of our approaches  is to impose … Read more

Iteration-complexity of an inner accelerated inexact proximal augmented Lagrangian method based on the classical Lagrangian function and a full Lagrange multiplier update

This paper establishes the iteration-complexity of an inner accelerated inexact proximal augmented Lagrangian (IAPIAL) method for solving linearly constrained smooth nonconvex composite optimization problems which is based on the classical Lagrangian function and, most importantly, performs a full Lagrangian multiplier update, i.e., no shrinking factor is incorporated on it. More specifically, each IAPIAL iteration consists … Read more

Computational advances in polynomial optimization: RAPOSa, a freely available global solver

In this paper we introduce RAPOSa, a global optimization solver specifically designed for (continuous) polynomial programming problems with box-constrained variables. Written entirely in C++, RAPOSa is based on the Reformulation-Linearization Technique developed by Sherali and Tuncbilek (1992) and subsequently improved in Sherali et al. (2012a), Sherali et al. (2012b) and Dalkiran and Sherali (2013). We … Read more