A Projected-Search Interior Method for Nonlinear Optimization

This paper concerns the formulation and analysis of a new interior method for general nonlinearly constrained optimization that combines a shifted primal-dual interior method with a projected-search method for bound-constrained optimization. The method involves the computation of an approximate Newton direction for a primal-dual penalty-barrier function that incorporates shifts on both the primal and dual … Read more

Robust Two-Stage Optimization with Covariate Data

We consider a generalization of two-stage decision problems in which the second-stage decision may be a function of a predictive signal but cannot adapt fully to the realized uncertainty. We will show how such problems can be learned from sample data by considering a family of regularized sample average formulations. Furthermore, our regularized data-driven formulations … Read more

An Explicit Spectral Fletcher-Reeves Conjugate Gradient Method for Bi-criteria Optimization

In this paper we propose a spectral Fletcher-Reeves conjugate gradient-like method (SFRCG) for solving unconstrained bi-criteria minimisation problems without using any technique of scalarization. We suggest an explicit formulae for computing a descent direction common to both criteria. This latter verifies furthermore a sufficient descent property which does not depend on the line search nor … Read more

Data-Driven Approximation of Contextual Chance-Constrained Stochastic Programs

Uncertainty in classical stochastic programming models is often described solely by independent random parameters, ignoring their dependence on multidimensional features. We describe a novel contextual chance-constrained programming formulation that incorporates features, and argue that solutions that do not take them into account may not be implementable. Our formulation cannot be solved exactly in most cases, … Read more

Inexact Penalty Decomposition Methods for Optimization Problems with Geometric Constraints

This paper provides a theoretical and numerical investigation of a penalty decomposition scheme for the solution of optimization problems with geometric constraints. In particular, we consider some  situations where parts of the constraints are nonconvex and complicated, like cardinality constraints, disjunctive programs, or matrix problems involving rank constraints. By a variable duplication and  decomposition strategy, … Read more

A Combinatorial Flow-based Formulation for Temporal Bin Packing Problems

We consider two neighboring generalizations of the classical bin packing problem: the temporal bin packing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on homogeneous servers of limited capacity. To … Read more

Vehicle Routing with Heterogeneous Time Windows

We consider a novel variant of the heterogeneous vehicle routing problem (VRP) in which each customer has different availability time windows for every vehicle. In particular, this covers our motivating application of planning daily delivery tours for a single vehicle, where customers can be available at different times each day. The existing literature on heterogeneous … Read more

An integrated assignment, routing, and speed model for roadway mobility and transportation with environmental, efficiency, and service goals

Managing all the mobility and transportation services with autonomous vehicles for users of a smart city requires determining the assignment of the vehicles to the users and their routing in conjunction with their speed. Such decisions must ensure low emission, efficiency, and high service quality by also considering the impact on traffic congestion caused by … Read more

RandProx: Primal-Dual Optimization Algorithms with Randomized Proximal Updates

Proximal splitting algorithms are well suited to solving large-scale nonsmooth optimization problems, in particular those arising in machine learning. We propose a new primal-dual algorithm, in which the dual update is randomized; equivalently, the proximity operator of one of the function in the problem is replaced by a stochastic oracle. For instance, some randomly chosen … Read more