SDP vs. LP relaxations for the moment approach in some performance evaluation problems

Given a Markov process we are interested in the numerical computation of the moments of the exit time from a bounded domain. We use a moment approach which, together with appropriate semidefinite positivity moment conditions, yields a sequence of semidefinite programs (or SDP relaxations), depending on the number of moments considered, that provide a sequence … Read more

An Iterative Solver-Based Infeasible Primal-Dual Path-Following Algorithm for Convex QP

In this paper we develop an interior-point primal-dual long-step path-following algorithm for convex quadratic programming (CQP) whose search directions are computed by means of an iterative (linear system) solver. We propose a new linear system, which we refer to as the \emph{augmented normal equation} (ANE), to determine the primal-dual search directions. Since the condition number … Read more

An interior-point method for MPECs based on strictly feasible relaxations

An interior-point method for solving mathematical programs with equilibrium constraints (MPECs) is proposed. At each iteration of the algorithm, a single primal-dual step is computed from each subproblem of a sequence. Each subproblem is defined as a relaxation of the MPEC with a nonempty strictly feasible region. In contrast to previous approaches, the proposed relaxation … Read more

On the Relationship between Bilevel Decomposition Algorithms and Direct Interior-Point Methods

Engineers have been using \emph{bilevel decomposition algorithms} to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upper-level problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used … Read more

A Local Convergence Analysis of Bilevel Decomposition Algorithms

Decomposition algorithms exploit the structure of large-scale optimization problems by breaking them into a set of smaller subproblems and a coordinating master problem. Cutting-plane methods have been extensively used to decompose convex problems. In this paper, however, we focus on certain nonconvex problems arising in engineering. Engineers have been using bilevel decomposition algorithms to tackle … Read more

An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems over Symmetric Cones

This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let ${\cal E}$ and ${\cal E}_+$ be a finite dimensional real vector space and a symmetric cone embedded in ${\cal E}$; examples of $\calE$ and $\calE_+$ include a pair of the … Read more

Cutting plane algorithms for robust conic convex optimization

In the paper we study some well-known cases of nonlinear programming problems, presenting them as instances of Inexact Linear Programming. The class of problems considered contains, in particular, semidefinite programming, second order cone programming and special cases of inexact semidefinite programming. Strong duality results for the nonlinear problems studied are obtained via the Lagrangian duality. … Read more

Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem

A new formulation is presented for the three-dimensional incremental quasi-static problems with unilateral frictional contact. Under the assumptions of small rotations and small strains, a Second-Order Cone Linear omplementarity Problem (SOCLCP) is formulated, which consists of complementarity conditions defined by the bilinear functions and the second-order cone constraints. The equilibrium configurations are obtained by using … Read more

A comparison of complete global optimization solvers

Results are reported of testing a number of existing state of the art solvers for global constrained optimization and constraint satisfaction on a set of over 1000 test problems in up to 1000 variables. Citationsubmitted to the special issue on Global Optimization of Math. ProgrammingArticleDownload View PDF

Mean-risk objectives in stochastic programming

Traditional stochastic programming is risk neutral in the sense that it is concerned with the optimization of an expectation criteria. A common approach to addressing risk in decision making problems is to consider a weighted mean-risk criterion, where some dispersion statistic is used as a measure of risk. We investigate the computational suitability of various … Read more