An alternating optimization approach for robust optimal control in chromatography

Chromatographic separation plays a vital role in various areas, as this technique can deliver high-quality products both in lab- and industrial-scale processes. Economical and also ecological benefits can be expected when optimizing such processes with mathematical methods. However, even small perturbations in the operating conditions can result in significantly altered results, which may lead to … Read more

Towards robust optimal control of chromatographic separation processes with controlled flow reversal

Column liquid chromatography is an important technique applied in the production of biopharmaceuticals, specifically for the separation of biological macromolecules such as proteins. When setting up process conditions, it is crucial that the purity of the product is sufficiently high, even in the presence of perturbations in the process conditions, e.g., altered buffer salt concentrations. … Read more

qpBAMM: a parallelizable ADMM approach for block-structured quadratic programs

Block-structured quadratic programs (QPs) frequently arise in the context of the direct approach to solving optimal control problems. For successful application of direct optimal control algorithms to many real-world problems it is paramount that these QPs can be solved efficiently and reliably. Besides interior-point methods and active-set methods, ADMM-based quadratic programming approaches have gained popularity. … Read more

Solving unbounded optimal control problems with the moment-SOS hierarchy

The behaviour of the moment-sums-of-squares (moment-SOS) hierarchy for polynomial optimal control problems on compact sets has been explored to a large extent. Our contribution focuses on the case of non-compact control sets. We describe a new approach to optimal control problems with unbounded controls, using compactification by partial homogenization, leading to an equivalent infinite dimensional … Read more

Optimal Control of Semilinear Graphon Systems

Controlling the dynamics of large-scale networks is essential for a macroscopic reduction of overall consumption and losses in the context of energy supply, finance, logistics, and mobility. We investigate the optimal control of semilinear dynamical systems on asymptotically infinite networks, using the notion of graphons. Graphons represent a limit object of a converging graph sequence … Read more

Integer Control Approximations for Graphon Dynamical Systems

Graphons generalize graphs and define a limit object of a converging graph sequence. The notion of graphons allows for a generic representation of coupled network dynamical systems. We are interested in approximating integer controls for graphon dynamical systems. To this end, we apply a decomposition approach comprised of a relaxation and a reconstruction step. We … Read more

Extended Formulations for Control Languages Defined by Finite-State Automata

Many discrete optimal control problems feature combinatorial constraints on the possible switching patterns, a common example being minimum dwell-time constraints. After discretizing to a finite time grid, for these and many similar types of constraints, it is possible to give a description of the convex hull of feasible (finite-dimensional) binary controls via extended formulations. In … Read more

A Sequential Benders-based Mixed-Integer Quadratic Programming Algorithm

For continuous decision spaces, nonlinear programs (NLPs) can be efficiently solved via sequential quadratic programming (SQP) and, more generally, sequential convex programming (SCP). These algorithms linearize only the nonlinear equality constraints and keep the outer convex structure of the problem intact, such as (conic) inequality constraints or convex objective terms. The aim of the presented … Read more

Sensitivity-based decision support for critical measures using the example of COVID-19 dynamics

We parametrize public policies in the context of the COVID-19 pandemic to evaluate the effectiveness of policies through sensitivity-based methods in order to offer insights into understanding the contributions to critical measures in retrospective. The study utilizes a group-specific SEIR model with a tracing and isolation strategy and vaccination programs. Public policies are applied to … Read more

Gas Transport Network Optimization: PDE-Constrained Models

The optimal control of gas transport networks was and still is a very important topic for modern economies and societies. Accordingly, a lot of research has been carried out on this topic during the last years and decades. Besides mixed-integer aspects in gas transport network optimization, one of the main challenges is that a physically … Read more