Extended Formulations for Control Languages Defined by Finite-State Automata

Many discrete optimal control problems feature combinatorial constraints on the possible switching patterns, a common example being minimum dwell-time constraints. After discretizing to a finite time grid, for these and many similar types of constraints, it is possible to give a description of the convex hull of feasible (finite-dimensional) binary controls via extended formulations. In … Read more

A Sequential Benders-based Mixed-Integer Quadratic Programming Algorithm

For continuous decision spaces, nonlinear programs (NLPs) can be efficiently solved via sequential quadratic programming (SQP) and, more generally, sequential convex programming (SCP). These algorithms linearize only the nonlinear equality constraints and keep the outer convex structure of the problem intact, such as (conic) inequality constraints or convex objective terms. The aim of the presented … Read more

Sensitivity-based decision support for critical measures using the example of COVID-19 dynamics

We parametrize public policies in the context of the COVID-19 pandemic to evaluate the effectiveness of policies through sensitivity-based methods in order to offer insights into understanding the contributions to critical measures in retrospective. The study utilizes a group-specific SEIR model with a tracing and isolation strategy and vaccination programs. Public policies are applied to … Read more

Gas Transport Network Optimization: PDE-Constrained Models

The optimal control of gas transport networks was and still is a very important topic for modern economies and societies. Accordingly, a lot of research has been carried out on this topic during the last years and decades. Besides mixed-integer aspects in gas transport network optimization, one of the main challenges is that a physically … Read more

Second-order Partial Outer Convexification for Switched Dynamical Systems

Mixed-integer optimal control problems arise in many practical applications combining nonlinear, dynamic, and combinatorial features. To cope with the resulting complexity, several approaches have been suggested in the past. Some of them rely on solving a reformulated and relaxed control problem, referred to as partial outer convexification. Inspired by an efficient algorithm for switching time … Read more

Distributionally Robust Modeling of Optimal Control

The aim of this paper is to formulate several questions related to distributionally robust Stochastic Optimal Control modeling. As an example, the distributionally robust counterpart of the classical inventory model is discussed in details. Finite and infinite horizon stationary settings are considered. ArticleDownload View PDF

Time-Domain Decomposition for Optimal Control Problems Governed by Semilinear Hyperbolic Systems with Mixed Two-Point Boundary Conditions

In this article, we continue our work (Krug et al., 2021) on time-domain decomposition of optimal control problems for systems of semilinear hyperbolic equations in that we now consider mixed two-point boundary value problems and provide an in-depth well-posedness analysis. The more general boundary conditions significantly enlarge the scope of applications, e.g., to hyperbolic problems … Read more

Different discretization techniques for solving optimal control problems with control complementarity constraints

There are first-optimize-then-discretize (indirect) and first-discretize-then-optimize (direct) methods to deal with infinite dimensional optimal problems numerically by use of finite element methods. Generally, both discretization techniques lead to different structures. Regarding the indirect method, one derives optimality conditions of the considered infinite dimensional problems in appropriate function spaces firstly and then discretizes them into suitable … Read more

Central Limit Theorem and Sample Complexity of Stationary Stochastic Programs

In this paper we discuss sample complexity of solving stationary stochastic programs by the Sample Average Approximation (SAA) method. We investigate this in the framework of Optimal Control (in discrete time) setting. In particular we derive a Central Limit Theorem type asymptotics for the optimal values of the SAA problems. The main conclusion is that … Read more

Distributionally Robust Optimal Control and MDP Modeling

In this paper, we discuss Optimal Control and Markov Decision Process (MDP) formulations of multistage optimization problems when the involved probability distributions are not known exactly, but rather are assumed to belong to specified ambiguity families. The aim of this paper is to clarify a connection between such distributionally robust approaches to multistage stochastic optimization. … Read more