Partial outer convexification for traffic light optimization in road networks

We consider the problem of computing optimal traffic light programs for urban road intersections using traffic flow conservation laws on networks. Based on a Partial Outer Convexification approach, which has been successfully applied in the area of mixed-integer optimal control for systems of ordinary or differential algebraic equations, we develop a computationally tractable two-stage solution … Read more

Partial Relaxation of Equality-constrained Programs

This paper presents a reformulation that is a natural “by-product” of the ‘variable endogenization’ process for equality-constrained programs. The method results a partial relaxation of the constraints which in turn confers some computational advantages. A fully-annotated example illustrates the technique and presents some comparative numerical results. Citation Siwale, I.: Partial Relaxation of Equality-constrained Programs. Technical … Read more

Constrained trace-optimization of polynomials in freely noncommuting variables

The study of matrix inequalities in a dimension-free setting is in the realm of free real algebraic geometry (RAG). In this paper we investigate constrained trace and eigenvalue optimization of noncommutative polynomials. We present Lasserre’s relaxation scheme for trace optimization based on semidefinite programming (SDP) and demonstrate its convergence properties. Finite convergence of this relaxation … Read more

Certificates of Optimality and Sensitivity Analysis using Generalized Subadditive Generator Functions: A test study on Knapsack Problems

We introduce a family of subadditive functions called Generator Functions for mixed integer linear programs. These functions were previously defined for pure integer programs with non-negative entries by Klabjan [13]. They are feasible in the subadditive dual and we show that they are enough to achieve strong duality. Several properties of the functions are shown. … Read more

Variational Analysis of Circular Cone Programs

This paper conducts variational analysis of circular programs, which form a new class of optimization problems in nonsymmetric conic programming important for optimization theory and its applications. First we derive explicit formulas in terms of the initial problem data to calculate various generalized derivatives/coderivatives of the projection operator associated with the circular cone. Then we … Read more

Performance Analysis of Content-Centric and Content-Delivery Networks with Evolving Object Popularity

The Internet is currently mostly exploited as a means to perform massive digital content distribution. Such a usage profile was not specifically taken into account while initially designing the architecture of the network: as a matter of fact, the Internet was instead conceived around the concept of host-to-host communications between two remote machines. To solve … Read more

Conic separation of finite sets:The homogeneous case

This work addresses the issue of separating two finite sets in $\mathbb{R}^n $ by means of a suitable revolution cone $$ \Gamma (z,y,s)= \{x \in \mathbb{R}^n : s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ The specific challenge at hand is to determine the aperture coefficient $s$, the axis $y$, and the apex $z$ of the cone. These parameters … Read more

A Convex Optimization Approach for Computing Correlated Choice Probabilities with Many Alternatives

A popular discrete choice model that incorporates correlation information is the Multinomial Probit (MNP) model where the random utilities of the alternatives are chosen from a multivariate normal distribution. Computing the choice probabilities is challenging in the MNP model when the number of alternatives is large and simulation is used to approximate the choice probabilities. … Read more

Solution of Nonlinear Equations via Optimization

This paper presents four optimization models for solving nonlinear equation systems. The models accommodate both over-specified and under-specified systems. A variable endogenization technique that improves efficiency is introduced, and a basic comparative study shows one of the methods presented to be very effective. Citation Siwale, I. (2013). Solution of nonlinear equation systems via optimization. Technical … Read more

Incremental Network Design with Shortest Paths

We introduce a class of incremental network design problems focused on investigating the optimal choice and timing of network expansions. We concentrate on an incremental network design problem with shortest paths. We investigate structural properties of optimal solutions, we show that the simplest variant is NP-hard, we analyze the worst-case performance of natural greedy heuristics, … Read more