Douglas-Rachford Splitting for Pathological Convex Optimization

Despite the vast literature on DRS, there has been very little work analyzing their behavior under pathologies. Most analyses assume a primal solution exists, a dual solution exists, and strong duality holds. When these assumptions are not met, i.e., under pathologies, the theory often breaks down and the empirical performance may degrade significantly. In this … Read more

A Branch-and-Benders-Cut Algorithm for the Road Restoration Crew Scheduling and Routing Problem

Extreme events such as disasters cause partial or total disruption of basic services such as water, energy, communication and transportation. In particular, roads can be damaged or blocked by debris, thereby obstructing access to certain affected areas. Thus, restoration of the damaged roads is necessary to evacuate victims and distribute emergency commodities to relief centers … Read more

CasADi – A software framework for nonlinear optimization and optimal control

We present CasADi, an open-source software framework for numerical optimization. CasADi is a general-purpose tool that can be used to model and solve optimization problems with a large degree of flexibility, larger than what is associated with popular algebraic modeling languages such as AMPL, GAMS, JuMP or Pyomo. Of special interest are problems constrained by … Read more

Non-stationary Douglas-Rachford and alternating direction method of multipliers: adaptive stepsizes and convergence

We revisit the classical Douglas-Rachford (DR) method for finding a zero of the sum of two maximal monotone operators. Since the practical performance of the DR method crucially depends on the stepsizes, we aim at developing an adaptive stepsize rule. To that end, we take a closer look at a linear case of the problem … Read more

Simplified Versions of the Conditional Gradient Method

We suggest simple modifications of the conditional gradient method for smooth optimization problems, which maintain the basic convergence properties, but reduce the implementation cost of each iteration essentially. Namely, we propose the step-size procedure without any line-search, and inexact solution of the direction finding subproblem. Preliminary results of computational tests confirm efficiency of the proposed … Read more

Tight-and-cheap conic relaxation for the AC optimal power flow problem

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite, second-order cone, convex quadratic, and linear relaxations, have recently attracted significant interest. The semidefinite relaxation is the strongest among them and is exact for many cases. However, the computational efficiency for solving large-scale semidefinite … Read more

The Maximum Clique Interdiction Problem

Given a graph G and an interdiction budget k, the Maximum Clique Interdiction Problem asks to find a subset of at most k vertices to remove from G so that the size of the maximum clique in the remaining graph is minimized. This problem has applications in many areas, such as crime detection, prevention of … Read more

Iterative weighted thresholding method for sparse solution of underdetermined linear equations

Recently, iterative reweighted methods have attracted much interest in compressed sensing, since they perform better than unweighted ones in most cases. Currently, weights are chosen heuristically in existing iterative reweighted methods, and nding an optimal weight is an open problem since we do not know the exact support set beforehand. In this paper, we present … Read more

A forward-backward penalty scheme with inertial effects for montone inclusions. Applications to convex bilevel programming

We investigate forward-backward splitting algorithm of penalty type with inertial effects for finding the zeros of the sum of a maximally monotone operator and a cocoercive one and the convex normal cone to the set of zeroes of an another cocoercive operator. Weak ergodic convergence is obtained for the iterates, provided that a condition express … Read more

Inexact cuts in Deterministic and Stochastic Dual Dynamic Programming applied to linear optimization problems

We introduce an extension of Dual Dynamic Programming (DDP) to solve linear dynamic programming equations. We call this extension IDDP-LP which applies to situations where some or all primal and dual subproblems to be solved along the iterations of the method are solved with a bounded error (inexactly). We provide convergence theorems both in the … Read more