Cuts and semidefinite liftings for the complex cut polytope

\(\) We consider the complex cut polytope: the convex hull of Hermitian rank 1 matrices \(xx^{\mathrm{H}}\), where the elements of \(x \in \mathbb{C}^n\) are \(m\)th unit roots. These polytopes have applications in \({\text{MAX-3-CUT}}\), digital communication technology, angular synchronization and more generally, complex quadratic programming. For \({m=2}\), the complex cut polytope corresponds to the well-known cut … Read more

Non-facial exposedness of copositive cones over symmetric cones

In this paper, we consider copositive cones over symmetric cones and show that they are never facially exposed when the underlying cone has dimension at least 2. We do so by explicitly exhibiting a non-exposed extreme ray. Our result extends the known fact that the cone of copositive matrices over the nonnegative orthant is not … Read more

Robust support vector machines via conic optimization

We consider the problem of learning support vector machines robust to uncertainty. It has been established in the literature that typical loss functions, including the hinge loss, are sensible to data perturbations and outliers, thus performing poorly in the setting considered. In contrast, using the 0-1 loss or a suitable non-convex approximation results in robust … Read more

Refined TSSOS

The moment-sum of squares hierarchy by Lasserre has become an established technique for solving polynomial optimization problems. It provides a monotonically increasing series of tight bounds, but has well-known scalability limitations. For structured optimization problems, the term-sparsity SOS (TSSOS) approach scales much better due to block-diagonal matrices, obtained by completing the connected components of adjacency … Read more

Sparse Polynomial Optimization with Unbounded Sets

This paper considers sparse polynomial optimization with unbounded sets. When the problem possesses correlative sparsity, we propose a sparse homogenized Moment-SOS hierarchy with perturbations to solve it. The new hierarchy introduces one extra auxiliary variable for each variable clique according to the correlative sparsity pattern. Under the running intersection property, we prove that this hierarchy … Read more

A low-rank augmented Lagrangian method for large-scale semidefinite programming based on a hybrid convex-nonconvex approach

\(\) This paper introduces HALLaR, a new first-order method for solving large-scale semidefinite programs (SDPs) with bounded domain. HALLaR is an inexact augmented Lagrangian (AL) method where the AL subproblems are solved by a novel hybrid low-rank (HLR) method. The recipe behind HLR is based on two key ingredients: 1) an adaptive inexact proximal point … Read more

Post-Processing with Projection and Rescaling Algorithms for Semidefinite Programming

We propose the algorithm that solves the symmetric cone programs (SCPs) by iteratively calling the projection and rescaling methods the algorithms for solving exceptional cases of SCP. Although our algorithm can solve SCPs by itself, we propose it intending to use it as a post-processing step for interior point methods since it can solve the … Read more

Solving moment and polynomial optimization problems on Sobolev spaces

Using standard tools of harmonic analysis, we state and solve the problem of moments for positive measures supported on the unit ball of a Sobolev space of multivariate periodic trigonometric functions. We describe outer and inner semidefinite approximations of the cone of Sobolev moments. They are the basic components of an infinite-dimensional moment-sums of squares … Read more

Exploiting Symmetries in Optimal Quantum Circuit Design

A physical limitation in quantum circuit design is the fact that gates in a quantum system can only act on qubits that are physically adjacent in the architecture. To overcome this problem, SWAP gates need to be inserted to make the circuit physically realizable. The nearest neighbour compliance problem (NNCP) asks for an optimal embedding … Read more

A semi-smooth Newton method for general projection equations applied to the nearest correlation matrix problem

In this paper, we extend and investigate the properties of the semi-smooth Newton method when applied to a general projection equation in finite dimensional spaces. We first present results concerning Clarke’s generalized Jacobian of the projection onto a closed and convex cone. We then describe the iterative process for the general cone case and establish … Read more