Neural Embedded Mixed-Integer Optimization for Location-Routing Problems

We present a novel framework that combines machine learning with mixed-integer optimization to solve the Capacitated Location-Routing Problem (CLRP). The CLRP is a classical yet NP-hard problem that integrates strategic facility location with operational vehicle routing decisions, aiming to simultaneously minimize both fixed and variable costs. The proposed method first trains a permutationally invariant neural … Read more

Effective Scenarios in Distributionally Robust Optimization with Wasserstein Distance

This paper studies effective scenarios in Distributionally Robust Optimization (DRO) problems defined on a finite number of realizations (also called scenarios) of the uncertain parameters. Effective scenarios are critical scenarios in DRO in the sense that their removal from the support of the considered distributions alters the optimal value. Ineffective scenarios are those whose removal … Read more

A general merit function-based global convergent framework for nonlinear optimization

In this paper, we revisit the convergence theory of the inexact restoration paradigm for non-linear optimization. The paper first identifies the basic elements of a globally convergent method based on merit functions. Then, the inexact restoration method that employs a two-phase iteration is introduced as a special case. A specific implementation is presented that is … Read more

A Generalized Voting Game for Categorical Network Choices

This paper presents a game-theoretical framework for data classification and network discovery, focusing on pairwise influences in multivariate choices. The framework consists of two complementary games in which individuals, connected through a signed weighted graph, exhibit network similarity. A voting rule captures the influence of an individual’s neighbors, categorized as attractive (friend-like) or repulsive (enemy-like), … Read more

A proximal-perturbed Bregman ADMM for solving nonsmooth and nonconvex optimization problems

In this paper, we focus on a linearly constrained composite minimization problem whose objective function is possibly nonsmooth and nonconvex. Unlike the traditional construction of augmented Lagrangian function, we provide a proximal-perturbed augmented Lagrangian and then develop a new Bregman Alternating Direction Method of Multipliers (ADMM). Under mild assumptions, we show that the novel augmented … Read more

Mixed-Integer Bilevel Optimization with Nonconvex Quadratic Lower-Level Problems: Complexity and a Solution Method

We study bilevel problems with a convex quadratic mixed-integer upper-level and a nonconvex quadratic, purely continuous lower-level problem. We prove $\Sigma_p^2$-hardness of this class of problems, derive an iterative lower- and upper-bounding scheme, and show its finiteness and correctness in the sense that it computes globally optimal points or proves infeasibility of the instance. To … Read more

On parametric formulations for the Asymmetric Traveling Salesman Problem

The traveling salesman problem is a widely studied classical combinatorial problem for which there are several integer linear formulations. In this work, we consider the Miller-Tucker-Zemlin (MTZ), Desrochers-Laporte (DL) and Single Commodity Flow (SCF) formulations. We argue that the choice of some parameters of these formulations is arbitrary and, therefore, there are families of formulations … Read more

A folding preprocess for the max k-cut problem

Given graph G = (V,E) with vertex set V and edge set E, the max k-cut problem seeks to partition the vertex set V into at most k subsets that maximize the weight (number) of edges with endpoints in different parts. This paper proposes a graph folding procedure (i.e., a procedure that reduces the number … Read more

Enhancing Top Efficiency by Minimizing Second-Best Scores: A Novel Perspective on Super Efficiency Models in DEA

In this paper, we reveal a new characterization of the super-efficiency model for Data Envelopment Analysis (DEA). In DEA, the efficiency of each decision making unit (DMU) is measured by the ratio the weighted sum of outputs divided by the weighted sum of inputs.In order to measure efficiency of a DMU, ${\rm DMU}_j$, say, in CCR … Read more

Correction to: A Lagrangian dual method for two-stage robust optimization with binary uncertainties

We provide a correction to the sufficient conditions under which closed-form expressions for the optimal Lagrange multiplier are provided in Subramanyam (2022). We first present a simple counterexample where the original conditions are insufficient, highlight where the original proof fails, and then provide modified conditions along with a correct proof of their validity. Finally, although … Read more