Proximity results in convex mixed-integer programming

We study proximity (resp. integrality gap), that is, the distance (resp. difference) between the optimal solutions (resp. optimal values) of convex integer programs (IP) and the optimal solutions (resp. optimal values) of their continuous relaxations. We show that these values can be upper bounded in terms of the recession cone of the feasible region of … Read more

Insights into the computational complexity of the single-source capacitated facility location problem with customer preferences

Single-source capacitated facility location problems (SSCFLPs) are well known in the operations research literature. A set of facilities is opened and each customer is assigned to exactly one open facility so that the capacity at each facility is respected. This customer assignment, however, deprives customers from choosing facilities according to their individual preferences. If customers … Read more

Two-Stage Distributionally Robust Optimization: Intuitive Understanding and Algorithm Development from the Primal Perspective

In this paper, we study the two-stage distributionally robust optimization (DRO) problem from the primal perspective. Unlike existing approaches, this perspective allows us to build a deeper and more intuitive understanding on DRO, to leverage classical and well established solution methods and to develop a general and fast decomposition algorithm (and its variants), and to … Read more

The Edge-based Contiguous p-median Problem with Connections to Logistics Districting

This paper introduces the edge-based contiguous p-median (ECpM) problem to partition the roads in a network into a given number of compact and contiguous territories. Two binary programming models are introduced, both of which incorporate a network distance. The first model requires an exponential number of cut set-based constraints to model contiguity; it is paired … Read more

Solving Multi-Follower Mixed-Integer Bilevel Problems with Binary Linking Variables

We study multi-follower bilevel optimization problems with binary linking variables where the second level consists of many independent integer-constrained subproblems. This problem class not only generalizes many classical interdiction problems but also arises naturally in many network design problems where the second-level subproblems involve complex routing decisions of the actors involved. We propose a novel … Read more

Multiple Kernel Learning-Aided Column-and-Constraint Generation Method

Two-stage robust optimization (two-stage RO), due to its ability to balance robustness and flexibility, has been widely used in various fields for decision-making under uncertainty. This paper proposes a multiple kernel learning (MKL)-aided column-and-constraint generation (CCG) method to address this issue in the context of data-driven decision optimization, and releases a corresponding registered Julia package, … Read more

Primal-dual proximal bundle and conditional gradient methods for convex problems

This paper studies the primal-dual convergence and iteration-complexity of proximal bundle methods for solving nonsmooth problems with convex structures. More specifically, we develop a family of primal-dual proximal bundle methods for solving convex nonsmooth composite optimization problems and establish the iteration-complexity in terms of a primal-dual gap. We also propose a class of proximal bundle … Read more

New Nonlinear Conjugate Gradient Methods with Guaranteed Descent for Multi-Objective Optimization

In this article, we present several examples of special nonlinear conjugate gradient directions for nonlinear (non-convex) multi-objective optimization. These directions provide a descent direction for the objectives, independent of the line-search. This way, we can provide an algorithm with simple, Armijo-like backtracking and prove convergence to first-order critical points. In contrast to other popular conjugate … Read more

Some Unified Theory for Variance Reduced Prox-Linear Methods

This work considers the nonconvex, nonsmooth problem of minimizing a composite objective of the form $f(g(x))+h(x)$ where the inner mapping $g$ is a smooth finite summation or expectation amenable to variance reduction. In such settings, prox-linear methods can enjoy variance-reduced speed-ups despite the existence of nonsmoothness. We provide a unified convergence theory applicable to a … Read more

Computing Counterfactual Explanations for Linear Optimization: A New Class of Bilevel Models and a Tailored Penalty Alternating Direction Method

Explainable artificial intelligence is one of the most important trends in modern machine-learning research. The idea is to explain the outcome of a model by presenting a certain change in the input of the model so that the outcome changes significantly. In this paper, we study this question for linear optimization problems as an automated … Read more