Optimization Over Trained Neural Networks: Taking a Relaxing Walk

Besides training, mathematical optimization is also used in deep learning to model and solve formulations over trained neural networks for purposes such as verification, compression, and optimization with learned constraints. However, solving these formulations soon becomes difficult as the network size grows due to the weak linear relaxation and dense constraint matrix. We have seen … Read more

Noise-Tolerant Optimization Methods for the Solution of a Robust Design Problem

The development of nonlinear optimization algorithms capable of performing reliably in the presence of noise has garnered considerable attention lately. This paper advocates for strategies to create noise-tolerant nonlinear optimization algorithms by adapting classical deterministic methods. These adaptations follow certain design guidelines described here, which make use of estimates of the noise level in the … Read more

Exploiting Symmetries in Optimal Quantum Circuit Design

A physical limitation in quantum circuit design is the fact that gates in a quantum system can only act on qubits that are physically adjacent in the architecture. To overcome this problem, SWAP gates need to be inserted to make the circuit physically realizable. The nearest neighbour compliance problem (NNCP) asks for an optimal embedding … Read more

A Survey on Optimization Studies of Group Centrality Metrics

Centrality metrics have become a popular concept in network science and optimization. Over the years, centrality has been used to assign importance and identify influential elements in various settings, including transportation, infrastructure, biological, and social networks, among others. That said, most of the literature has focused on nodal versions of centrality. Recently, group counterparts of … Read more

Optimal counterfactual explanations for k-Nearest Neighbors using Mathematical Optimization and Constraint Programming

\(\) Within the topic of explainable AI, counterfactual explanations to classifiers have received significant recent attention. We study counterfactual explanations that try to explain why a data point received an undesirable classification by providing the closest data point that would have received a desirable one. Within the context of one the simplest and most popular … Read more

Fidelity and interruption control for expensive constrained multi-fidelity blackbox optimization

This work introduces a novel blackbox optimization algorithm for computationally expensive constrained multi-fidelity problems. When applying a direct search method to such problems, the scarcity of feasible points may lead to numerous costly evaluations spent on infeasible points. Our proposed fidelity and interruption controlled optimization algorithm addresses this issue by leveraging multi-fidelity information, allowing for … Read more

Incentivizing Investment and Reliability: A Study on Electricity Capacity Markets

The capacity market, a marketplace to exchange available generation capacity for electricity production, provides a major revenue stream for generators and is adopted in several U.S. regions. A subject of ongoing debate, the capacity market is viewed by its proponents as a crucial mechanism to ensure system reliability, while critics highlight its drawbacks such as … Read more

On a Tractable Single-Level Reformulation of a Multilevel Model of the European Entry-Exit Gas Market with Market Power

We propose a framework that allows to quantitatively analyze the interplay of the different agents involved in gas trade and transport in the context of the European entry-exit system. Previous contributions have focused on the case of perfectly competitive buyers and sellers of gas, which allows to replace the respective market equilibrium problem by a … Read more

Bi-level multi-criteria optimization to include linear energy transfer into proton treatment planning

In proton therapy treatment planning, the aim is to ensure tumor control while sparing the various surrounding risk structures. The biological effect of the irradiation depends on both physical dose and linear energy transfer (LET). In order to include LET alongside physical dose in plan creation, we propose to formulate the proton treatment planning problem … Read more

Trajectory Optimization of Unmanned Aerial Vehicles in the Electromagnetic Environment

We consider a type of routing problems common in defence and security, in which we control a fleet of unmanned aerial vehicles (UAVs) that have to reach one or more target locations without being detected by an adversary. Detection can be carried out by a variety of sensors (radio receivers, cameras, personnel, etc) placed by … Read more