Globally Optimized Finite Packings of Arbitrary Size Spheres in R^d

This work discusses the following general packing problem-class: given a finite collection of d-dimensional spheres with arbitrarily chosen radii, find the smallest sphere in R^d that contains the entire collection of these spheres in a non-overlapping arrangement. Generally speaking, analytical solution approaches cannot be expected to apply to this general problem-type, except for very small … Read more

A new algebraic analysis to linear mixed models

This article presents a new investigation to the linear mixed model $\by = \bX \bbe + \bZ\bga + \bve$ with fixed effect $\bX\bbe$ and random effect $\bZ\bga$ under a general assumption via some novel algebraic tools in matrix theory, and reveals a variety of deep and profound properties hidden behind the linear mixed model. We … Read more

Statistical inference and hypotheses testing of risk averse stochastic programs

We study statistical properties of the optimal value and optimal solutions of the Sample Average Approximation of risk averse stochastic problems. Central Limit Theorem type results are derived for the optimal value and optimal solutions when the stochastic program is expressed in terms of a law invariant coherent risk measure. The obtained results are applied … Read more

Nonlinear Regression Analysis by Global Optimization: A Case Study in Space Engineering

The search for a better understanding of complex systems calls for quantitative model development. Within this development process, model fitting to observational data (calibration) often plays an important role. Traditionally, local optimization techniques have been applied to solve nonlinear (as well as linear) model calibration problems numerically: the limitations of such approaches in the nonlinear … Read more

Beating the SDP bound for the floor layout problem: A simple combinatorial idea

For many Mixed-Integer Programming (MIP) problems, high-quality dual bounds can obtained either through advanced formulation techniques coupled with a state-of-the-art MIP solver, or through Semidefinite Programming (SDP) relaxation hierarchies. In this paper, we introduce an alternative bounding approach that exploits the “combinatorial implosion” effect by solving portions of the original problem and aggregating this information … Read more

Strong mixed-integer formulations for the floor layout problem

The floor layout problem (FLP) tasks a designer with positioning a collection of rectangular boxes on a fixed floor in such a way that minimizes total communication costs between the components. While several mixed integer programming (MIP) formulations for this problem have been developed, it remains extremely challenging from a computational perspective. This work takes … Read more

Numerical Solution of Linear-Quadratic Optimal Control Problems for Switching System

In this paper we obtained an approach to the optimal switching control problem with unknown switching points which it is described in reference [1, 2]. In reference [1], the authors studied the Decomposition of Linear-Quadratic Optimal Control Problems for Two-Steps Systems. In [1], the authors assumed the switching point t1 is xed in the interval … Read more

On the convergence of stochastic bi-level gradient methods

We analyze the convergence of stochastic gradient methods for bi-level optimization problems. We address two specific cases: first when the outer objective function can be expressed as a finite sum of independent terms, and next when both the outer and inner objective functions can be expressed as finite sums of independent terms. We assume Lipschitz … Read more

A Riemannian rank-adaptive method for low-rank optimization

This paper presents an algorithm that solves optimization problems on a matrix manifold $\mathcal{M} \subseteq \mathbb{R}^{m \times n}$ with an additional rank inequality constraint. The algorithm resorts to well-known Riemannian optimization schemes on fixed-rank manifolds, combined with new mechanisms to increase or decrease the rank. The convergence of the algorithm is analyzed and a weighted … Read more

A new algorithm for solving planar multiobjective location problems involving the Manhattan norm

This paper is devoted to the study of unconstrained planar multiobjective location problems, where distances between points are defined by means of the Manhattan norm. By identifying all nonessential objectives, we develop an effective algorithm for generating the whole set of efficient solutions. We prove the correctness of this algorithm and present some computational results, … Read more