Techniques in Iterative Proton CT Image Reconstruction

This is a review paper on some of the physics, modeling, and iterative algorithms in proton computed tomography (pCT) image reconstruction. The primary challenge in pCT image reconstruction lies in the degraded spatial resolution resulting from multiple Coulomb scattering within the imaged object. Analytical models such as the most likely path (MLP) have been proposed … Read more

Steiner tree network scheduling with opportunity cost of time

This paper points out the impact of opportunity cost of time (high discount rate or high rate of time preference, time-dependent profits, etc.) in designing real-world Steiner trees like electricity, gas, water, or telecommunications networks. We present the Steiner Tree Scheduling Problem which consists of finding a Steiner tree in an activity-on-arc graph that spans … Read more

DC Decomposition of Nonconvex Polynomials with Algebraic Techniques

We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite programming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex-concave procedure … Read more

High Throughput Computing for Massive Scenario Analysis and Optimization to Minimize Cascading Blackout Risk

We describe a simulation-based optimization method that allocates additional capacity to transmission lines in order to minimize the expected value of the load shed due to a cascading blackout. Estimation of the load-shed distribution is accomplished via the ORNL-PSerc-Alaska (OPA) simulation model, which solves a sequence of linear programs. Key to achieving an effective algorithm … Read more

New Formulation and Strong MISOCP Relaxations for AC Optimal Transmission Switching Problem

As the modern transmission control and relay technologies evolve, transmission line switching has become an important option in power system operators’ toolkits to reduce operational cost and improve system reliability. Most recent research has relied on the DC approximation of the power flow model in the optimal transmission switching problem. However, it is known that … Read more

Robust Markov Decision Processes for Medical Treatment Decisions

Medical treatment decisions involve complex tradeoffs between the risks and benefits of various treatment options. The diversity of treatment options that patients can choose over time and uncertainties in future health outcomes, result in a difficult sequential decision making problem. Markov decision processes (MDPs) are commonly used to study medical treatment decisions; however, optimal policies … Read more

Quantitative recovery conditions for tree-based compressed sensing

As shown in [9, 1], signals whose wavelet coefficients exhibit a rooted tree structure can be recovered — using specially-adapted compressed sensing algorithms — from just $n=\mathcal{O}(k)$ measurements, where $k$ is the sparsity of the signal. Motivated by these results, we introduce a simplified proportional-dimensional asymptotic framework which enables the quantitative evaluation of recovery guarantees … Read more

Simple Approximations of Semialgebraic Sets and their Applications to Control

Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes … Read more

Linear conic formulations for two-party correlations and values of nonlocal games

In this work we study the sets of two-party correlations generated from a Bell scenario involving two spatially separated systems with respect to various physical models. We show that the sets of classical, quantum, no-signaling and unrestricted correlations can be expressed as projections of affine sections of appropriate convex cones. As a by-product, we identify … Read more

Construction of IMEX DIMSIMs of high order and stage order

For many systems of differential equations modeling problems in science and engineering, there are often natural splittings of the right hand side into two parts, one of which is non-stff or mildly stff, and the other part is stff. Such systems can be effciently treated by a class of implicit-explicit (IMEX) diagonally implicit multistage integration … Read more