Risk-Averse Antibiotics Time Machine Problem

Antibiotic resistance, which is a serious healthcare issue, emerges due to uncontrolled and repeated antibiotic use that causes bacteria to mutate and develop resistance to antibiotics. The Antibiotics Time Machine Problem aims to come up with treatment plans that maximize the probability of reversing these mutations. Motivated by the severity of the problem, we develop … Read more

New Dynamic Discretization Discovery Strategies for Continuous-Time Service Network Design

Service Network Design Problems (SNDPs) are prevalent in the freight industry. While the classic SNDP is defined on a discretized planning horizon with integral time units, the Continuous-Time SNDP (CTSNDP) uses a continuous-time horizon to avoid discretization errors. Existing CTSNDP algorithms primarily rely on the Dynamic Discretization Discovery (DDD) framework, which iteratively refines discretization and … Read more

A Single-Level Reformulation of Binary Bilevel Programs using Decision Diagrams

Binary bilevel programs are notoriously difficult to solve due to the absence of strong and efficiently computable relaxations. In this work, we introduce a novel single-level reformulation of these programs by leveraging a network flow-based representation of the follower’s value function, utilizing decision diagrams and linear programming duality. This approach enables the development of scalable … Read more

Mixed Integer Linear Programming Formulations for Robust Surgery Scheduling

We introduce Mixed Integer Linear Programming (MILP) formulations for the two-stage robust surgery scheduling problem (2SRSSP). We derive these formulations by modeling the second-stage problem as a longest path problem on a layered acyclic graph and subsequently converting it into a linear program. This linear program is then dualized and integrated with the first-stage, resulting … Read more

Improved Approximation Algorithms for Low-Rank Problems Using Semidefinite Optimization

Inspired by the impact of the Goemans-Williamson algorithm on combinatorial optimization, we construct an analogous relax-then-round strategy for low-rank optimization problems. First, for orthogonally constrained quadratic optimization problems, we derive a semidefinite relaxation and a randomized rounding scheme that obtains provably near-optimal solutions, building on the blueprint from Goemans and Williamson for the Max-Cut problem. … Read more

Bi-Parameterized Two-Stage Stochastic Min-Max and Min-Min Mixed Integer Programs

We introduce two-stage stochastic min-max and min-min integer programs with bi-parameterized recourse (BTSPs), where the first-stage decisions affect both the objective function and the feasible region of the second-stage problem. To solve these programs efficiently, we introduce Lagrangian-integrated \(L\)-shaped (\(L^2\)) methods, which guarantee exact solutions when the first-stage decisions are pure binary. For mixed-binary first-stage … Read more

Proximity results in convex mixed-integer programming

We study proximity (resp. integrality gap), that is, the distance (resp. difference) between the optimal solutions (resp. optimal values) of convex integer programs (IP) and the optimal solutions (resp. optimal values) of their continuous relaxations. We show that these values can be upper bounded in terms of the recession cone of the feasible region of … Read more

Solving Multi-Follower Mixed-Integer Bilevel Problems with Binary Linking Variables

We study multi-follower bilevel optimization problems with binary linking variables where the second level consists of many independent integer-constrained subproblems. This problem class not only generalizes many classical interdiction problems but also arises naturally in many network design problems where the second-level subproblems involve complex routing decisions of the actors involved. We propose a novel … Read more

Polynomial-Time Algorithms for Setting Tight Big-M Coefficients in Transmission Expansion Planning with Disconnected Buses

The increasing penetration of renewable energy into power systems necessitates the development of effective methodologies to integrate initially disconnected generation sources into the grid. This paper introduces the Longest Shortest-Path-Connection (LSPC) algorithm, a graph-based method to enhance the mixed-integer linear programming disjunctive formulation of Transmission Expansion Planning (TEP) using valid inequalities (VIs). Traditional approaches for … Read more

Neural Embedded Mixed-Integer Optimization for Location-Routing Problems

We present a novel framework that combines machine learning with mixed-integer optimization to solve the Capacitated Location-Routing Problem (CLRP). The CLRP is a classical yet NP-hard problem that integrates strategic facility location with operational vehicle routing decisions, aiming to simultaneously minimize both fixed and variable costs. The proposed method first trains a permutationally invariant neural … Read more