Optimization Over Trained Neural Networks: Taking a Relaxing Walk

Besides training, mathematical optimization is also used in deep learning to model and solve formulations over trained neural networks for purposes such as verification, compression, and optimization with learned constraints. However, solving these formulations soon becomes difficult as the network size grows due to the weak linear relaxation and dense constraint matrix. We have seen … Read more

Tactical workforce sizing and scheduling decisions for last-mile delivery

We tackle the problems of workforce sizing and shift scheduling of a logistic operator delivering parcels in the last-mile segment of the supply chain. Our working hypothesis is that the relevant decisions are affected by two main trade-offs: workforce size and shift stability. A large workforce is able to deal with demand fluctuations but incurs … Read more

Mixed-Integer Linear Optimization for Semi-Supervised Optimal Classification Trees

Decision trees are one of the most famous methods for solving classification problems, mainly because of their good interpretability properties. Moreover, due to advances in recent years in mixed-integer optimization, several models have been proposed to formulate the problem of computing optimal classification trees. The goal is, given a set of labeled points, to split … Read more

Integrating Public Transport in Sustainable Last-Mile Delivery: Column Generation Approaches

We tackle the problem of coordinating a three-echelon last-mile delivery system. In the first echelon, trucks transport parcels from distribution centres outside the city to public transport stops. In the second echelon, the parcels move on public transport and reach the city centre. In the third echelon, zero-emission vehicles pick up the parcels at public … Read more

On Rank-Monotone Graph Operations and Minimal Obstruction Graphs for the Lovász-Schrijver SDP Hierarchy

We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász-Schrijver SDP operator LS_+, with a particular focus on finding and characterizing the smallest graphs with a given LS_+-rank (the least number of iterations of the LS_+ operator on the fractional stable set polytope to compute the stable set … Read more

Structural Insights and an IP-based Solution Method for Patient-to-room Assignment Under Consideration of Single Room Entitlements

Patient-to-room assignment (PRA) is a scheduling problem in decision support for large hospitals. This work proposes Integer Programming (IP) formulations for dynamic PRA, where either full, limited or uncertain information on incoming patients is available. The applicability is verified through a computational study. Results indicate that large, real world instances can be solved to a … Read more

On Sparse Canonical Correlation Analysis

The classical Canonical Correlation Analysis (CCA) identifies the correlations between two sets of multivariate variables based on their covariance, which has been widely applied in diverse fields such as computer vision, natural language processing, and speech analysis. Despite its popularity, CCA can encounter challenges in explaining correlations between two variable sets within high-dimensional data contexts. … Read more

A widespread belief about county splits in political districting plans is wrong

Consider the task of dividing a state into k contiguous political districts whose populations must not differ by more than one person, following current practice for congressional districting in the USA. A widely held belief among districting experts is that this task requires at least k-1 county splits. This statement has appeared in expert testimony, … Read more

A Family of Spanning-Tree Formulations for the Maximum Cut Problem

We present a family of integer programming formulations for the maximum cut problem. These formulations encode the incidence vectors of the cuts of a connected graph by employing a subset of the odd-cycle inequalities that relate to a spanning tree, and they require only the corresponding edge variables to be integral explicitly. They so describe … Read more

QUBO Dual Bounds via SDP Plane Projection Method

In this paper, we present a new method to solve a certain type of Semidefinite Programming (SDP) problems. These types of SDPs naturally arise in the Quadratic Convex Reformulation (QCR) method and can be used to obtain dual bounds of Quadratic Unconstrained Binary Optimization (QUBO) problems. QUBO problems have recently become the focus of attention … Read more