Optimal Control of Semilinear Graphon Systems

Controlling the dynamics of large-scale networks is essential for a macroscopic reduction of overall consumption and losses in the context of energy supply, finance, logistics, and mobility. We investigate the optimal control of semilinear dynamical systems on asymptotically infinite networks, using the notion of graphons. Graphons represent a limit object of a converging graph sequence … Read more

Strengthening Dual Bounds for Multicommodity Capacitated Network Design with Unsplittable Flow Constraints

Multicommodity capacitated network design (MCND) models can be used to optimize the consolidation of shipments within e-commerce fulfillment networks. In practice, fulfillment networks require that shipments with the same origin and destination follow the same transfer path. This unsplittable flow requirement complicates the MCND problem, requiring integer programming (IP) formulations with binary variables replacing continuous … Read more

New Dynamic Discretization Discovery Strategies for Continuous-Time Service Network Design

Service Network Design Problems (SNDPs) are prevalent in the freight industry. While the classic SNDP is defined on a discretized planning horizon with integral time units, the Continuous-Time SNDP (CTSNDP) uses a continuous-time horizon to avoid discretization errors. Existing CTSNDP algorithms primarily rely on the Dynamic Discretization Discovery (DDD) framework, which iteratively refines discretization and … Read more

Bi-Parameterized Two-Stage Stochastic Min-Max and Min-Min Mixed Integer Programs

We introduce two-stage stochastic min-max and min-min integer programs with bi-parameterized recourse (BTSPs), where the first-stage decisions affect both the objective function and the feasible region of the second-stage problem. To solve these programs efficiently, we introduce Lagrangian-integrated L-shaped (\(L^2\)) methods, which guarantee exact solutions when the first-stage decisions are pure binary. For mixed-binary first-stage … Read more

Solving Multi-Follower Mixed-Integer Bilevel Problems with Binary Linking Variables

We study multi-follower bilevel optimization problems with binary linking variables where the second level consists of many independent integer-constrained subproblems. This problem class not only generalizes many classical interdiction problems but also arises naturally in many network design problems where the second-level subproblems involve complex routing decisions of the actors involved. We propose a novel … Read more

A folding preprocess for the max k-cut problem

Given graph G = (V,E) with vertex set V and edge set E, the max k-cut problem seeks to partition the vertex set V into at most k subsets that maximize the weight (number) of edges with endpoints in different parts. This paper proposes a graph folding procedure (i.e., a procedure that reduces the number … Read more

Partitioning a graph into low-diameter clusters

This paper studies the problems of partitioning the vertices of a graph G = (V,E) into (or covering with) a minimum number of low-diameter clusters from the lenses of approximation algorithms and integer programming. Here, the low-diameter criterion is formalized by an s-club, which is a subset of vertices whose induced subgraph has diameter at … Read more

Spanning and Splitting: Integer Semidefinite Programming for the Quadratic Minimum Spanning Tree Problem

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer of a quadratic function over all possible spanning trees of a graph. We give two formulations of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for … Read more

Social Classroom Seating Assignment Problems

University students benefit academically, personally and professionally from an expansion of their in-class social network. To facilitate this, we present a novel and broadly applicable optimization approach that exposes individuals to as many as possible peers that they do not know. This novel class of ‘social seating assignment problems’ is parameterized by the social network, … Read more

Complexity of the Directed Robust b-matching Problem and its Variants on Different Graph Classes

The b-matching problem is a well-known generalization of the classical matching problem with various applications in operations research and computer science. Given an undirected graph, each vertex v has a capacity b(v), indicating the maximum number of times it can be matched, while edges can also be used multiple times. The problem is solvable in … Read more