A folding preprocess for the max k-cut problem

Given graph G = (V,E) with vertex set V and edge set E, the max k-cut problem seeks to partition the vertex set V into at most k subsets that maximize the weight (number) of edges with endpoints in different parts. This paper proposes a graph folding procedure (i.e., a procedure that reduces the number … Read more

Partitioning a graph into low-diameter clusters

This paper studies the problems of partitioning the vertices of a graph G = (V,E) into (or covering with) a minimum number of low-diameter clusters from the lenses of approximation algorithms and integer programming. Here, the low-diameter criterion is formalized by an s-club, which is a subset of vertices whose induced subgraph has diameter at … Read more

Spanning and Splitting: Integer Semidefinite Programming for the Quadratic Minimum Spanning Tree Problem

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer of a quadratic function over all possible spanning trees of a graph. We give two formulations of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for … Read more

Social Classroom Seating Assignment Problems

University students benefit academically, personally and professionally from an expansion of their in-class social network. To facilitate this, we present a novel and broadly applicable optimization approach that exposes individuals to as many as possible peers that they do not know. This novel class of ‘social seating assignment problems’ is parameterized by the social network, … Read more

Complexity of the Directed Robust b-matching Problem and its Variants on Different Graph Classes

The b-matching problem is a well-known generalization of the classical matching problem with various applications in operations research and computer science. Given an undirected graph, each vertex v has a capacity b(v), indicating the maximum number of times it can be matched, while edges can also be used multiple times. The problem is solvable in … Read more

The Dantzig-Fulkerson-Johnson TSP formulation is easy to solve for few subtour constraints

The most successful approaches for the TSP use the integer programming model proposed in 1954 by Dantzig, Fulkerson, and Johnson (DFJ). Although this model has exponentially many subtour elimination constraints (SECs), it has been observed that relatively few of them are needed to prove optimality in practice. This leads us to wonder: What is the … Read more

Minimum-Peak-Cost Flows Over Time

Peak cost is a novel objective for flows over time that describes the amount of workforce necessary to run a system. We focus on minimising peak costs in the context of maximum temporally repeated flows and formulate the corresponding MPC-MTRF problem. First, we discuss the limitations that emerge when restricting the solution space to integral … Read more

A Row-wise Algorithm for Graph Realization

Given a \(\{0,1\}\)-matrix \(M\), the graph realization problem for \(M\) asks if there exists a spanning forest such that the columns of \(M\) are incidence vectors of paths in the forest. The problem is closely related to the recognition of network matrices, which are a large subclass of totally unimodular matrices and have many applications … Read more

Compact Mixed Integer Programming Formulations for the Minimum Biclique Cover Problem

Given a simple graph G = (V, E) with vertex set V and edge set E, the minimum biclique cover problem seeks to cover all edges of the graph with a minimum number of bicliques (i.e., complete bipartite subgraphs). This paper proposes two compact mixed integer programming (MIP) formulations for solving the minimum biclique cover … Read more