HyperNOMAD: Hyperparameter optimization of deep neural networks using mesh adaptive direct search

The performance of deep neural networks is highly sensitive to the choice of the hyperparameters that define the structure of the network and the learning process. When facing a new application, tuning a deep neural network is a tedious and time consuming process that is often described as a “dark art”. This explains the necessity … Read more

A Generic Exact Solver for Vehicle Routing and Related Problems

Major advances were recently obtained in the exact solution of Vehicle Routing Problems (VRPs). Sophisticated Branch-Cut-and-Price (BCP) algorithms for some of the most classical VRP variants now solve many instances with up to a few hundreds of customers. However, adapting and reimplementing those successful algorithms for other variants can be a very demanding task. This … Read more

A Python package for multi-stage stochastic programming

This paper presents a Python package to solve multi-stage stochastic linear programs (MSLP) and multi-stage stochastic integer programs (MSIP). Algorithms based on an extensive formulation and Stochastic Dual Dynamic (Integer) Programming (SDDP/SDDiP) method are implemented. The package is synthetically friendly and has a number of features which are not available in the competing software packages. … Read more

Detection and Transformation of Second-Order Cone Programming Problems in a General-Purpose Algebraic Modeling Language

Diverse forms of nonlinear optimization problems can be recast to the special form of second-order cone problems (SOCPs), permitting a wider variety of highly effective solvers to be applied. Popular solvers assume, however, that the necessary transformations to required canonical forms have already been identified and carried out. We describe a general approach to the … Read more

Scalable Preconditioning of Block-Structured Linear Algebra Systems using ADMM

We study the solution of block-structured linear algebra systems arising in optimization by using iterative solution techniques. These systems are the core computational bottleneck of many problems of interest such as parameter estimation, optimal control, network optimization, and stochastic programming. Our approach uses a Krylov solver (GMRES) that is preconditioned with an alternating method of … Read more

On Electricity Market Equilibria with Storage: Modeling, Uniqueness, and a Distributed ADMM

We consider spot-market trading of electricity including storage operators as additional agents besides producers and consumers. Storages allow for shifting produced electricity from one time period to a later one. Due to this, multiple market equilibria may occur even if classical uniqueness assumptions for the case without storages are satisfied. For models containing storage operators, … Read more

A two-level distributed algorithm for nonconvex constrained optimization

This paper aims to develop distributed algorithms for nonconvex optimization problems with complicated constraints associated with a network. The network can be a physical one, such as an electric power network, where the constraints are nonlinear power flow equations, or an abstract one that represents constraint couplings between decision variables of different agents. Despite the … Read more

When a maximal angle among cones is nonobtuse

Principal angles between linear subspaces have been studied for their application to statistics, numerical linear algebra, and other areas. In 2005, Iusem and Seeger defined critical angles within a single convex cone as an extension of antipodality in a compact set. Then, in 2016, Seeger and Sossa extended that notion to two cones. This was … Read more

A Comparison of Nonsmooth, Nonconvex, Constrained Optimization Solvers for the Design of Time-Delay Compensators

We present a detailed set of performance comparisons of two state-of-the-art solvers for the application of designing time-delay compensators, an important problem in the field of robust control. Formulating such robust control mechanics as constrained optimization problems often involves objective and constraint functions that are both nonconvex and nonsmooth, both of which present significant challenges … Read more

Packing Ovals In Optimized Regular Polygons

We present a model development framework and numerical solution approach to the general problem-class of packing convex objects into optimized convex containers. Specifically, here we discuss the problem of packing ovals (egg-shaped objects, defined here as generalized ellipses) into optimized regular polygons in R”. Our solution strategy is based on the use of embedded Lagrange … Read more