General parameterized proximal point algorithm with applications in the statistical learning

In the literature, there are a few researches for the proximal point algorithm (PPA) with some parameters in the proximal matrix, especially for the multi-objective optimization problems. Introducing some parameters to the PPA will make it more attractive and flexible. By using the unified framework of the classical PPA and constructing a parameterized proximal matrix, … Read more

Lyapunov rank of polyhedral positive operators

If K is a closed convex cone and if L is a linear operator having L(K) a subset of K, then L is a positive operator on K and L preserves inequality with respect to K. The set of all positive operators on K is denoted by pi(K). If J is the dual of K, … Read more

Forecast-based scenario-tree generation method

Sometimes, the best available information about an uncertain future is a single forecast. On the other hand, stochastic-programming models need future data in the form of scenario trees. While a single forecast does not provide enough information to construct a scenario tree, a forecast combined with historical data does—but none of the standard scenario-generation methods … Read more

A Novel Matching Formulation for Startup Costs in Unit Commitment

We present a novel formulation for startup cost computation in the unit commitment problem (UC). Both the proposed formulation and existing formulations in the literature are placed in a formal, theoretical dominance hierarchy based on their respective linear programming relaxations. The proposed formulation is tested empirically against existing formulations on large-scale unit commitment instances drawn … Read more

The SCIP Optimization Suite 4.0

The SCIP Optimization Suite is a powerful collection of optimization software that consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear programming solver SoPlex, the modeling language Zimpl, the parallelization framework UG, and the generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-Jack for solving Steiner tree problems, PolySCIP for solving … Read more

Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major … Read more

A Stability Result for Linear Markov Decision Processes

In this paper, we propose a semi-metric for Markov processes that allows to bound optimal values of linear Markov Decision Processes (MDPs). Similar to existing notions of distance for general stochastic processes our distance is based on transportation metrics. Apart from the specialization to MDPs, our contribution is to make the distance problem specific, i.e., … Read more

Conic relaxation approaches for equal deployment problems

An important problem in the breeding of livestock, crops, and forest trees is the optimum of selection of genotypes that maximizes genetic gain. The key constraint in the optimal selection is a convex quadratic constraint that ensures genetic diversity, therefore, the optimal selection can be cast as a second-order cone programming (SOCP) problem. Yamashita et … Read more

Partial hyperplane activation for generalized intersection cuts

The generalized intersection cut (GIC) paradigm is a recent framework for generating cutting planes in mixed integer programming with attractive theoretical properties. We investigate this computationally unexplored paradigm and observe that a key hyperplane activation procedure embedded in it is not computationally viable. To overcome this issue, we develop a novel replacement to this procedure … Read more

A new mixed integer linear model for the berth allocation and quay crane assignment problem

Efficient management of operations in seaport container terminals has become a critical issue, due to the increase in maritime traffic and the strong competition between ports. In this paper we focus on two seaside operational problems: the Berth Allocation Problem and the Quay Crane Assignment Problem, which are considered in an integrated way. For the … Read more