Revisiting local branching with a machine learning lens

Finding high-quality solutions to mixed-integer linear programming problems (MILPs) is of great importance for many practical applications. In this respect, the refinement heuristic local branching (LB) has been proposed to produce improving solutions and has been highly influential for the development of local search methods in MILP. The algorithm iteratively explores a sequence of solution … Read more

Relaxations and Cutting Planes for Linear Programs with Complementarity Constraints

We study relaxations for linear programs with complementarity constraints, especially instances whose complementary pairs of variables are not independent. Our formulation is based on identifying vertex covers of the conflict graph of the instance and generalizes the extended reformulation-linearization technique of Nguyen, Richard, and Tawarmalani to instances with general complementarity conditions between variables. We demonstrate … Read more

Superiorization as a novel strategy for linearly constrained inverse radiotherapy treatment planning

Objective: We apply the superiorization methodology to the intensity-modulated radiation therapy (IMRT) treatment planning problem. In superiorization, linear voxel dose inequality constraints are the fundamental modeling tool within which a feasibility-seeking projection algorithm will seek a feasible point. This algorithm is then perturbed with gradient descent steps to reduce a nonlinear objective function. Approach: Within … Read more

An Improved Unconstrained Approach for Bilevel Optimization

In this paper, we focus on the nonconvex-strongly-convex bilevel optimization problem (BLO). In this BLO, the objective function of the upper-level problem is nonconvex and possibly nonsmooth, and the lower-level problem is smooth and strongly convex with respect to the underlying variable $y$. We show that the feasible region of BLO is a Riemannian manifold. … Read more

Cutting-plane algorithm for sparse estimation of the Cox proportional-hazards model

Survival analysis is a family of statistical methods for analyzing event occurrence times. In this paper, we address the mixed-integer optimization approach to sparse estimation of the Cox proportional-hazards model for survival analysis. Specifically, we propose a high-performance cutting-plane algorithm based on reformulation of bilevel optimization for sparse estimation. This algorithm solves the upper-level problem … Read more

Markov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming with an Application to Disaster Relief Logistics

We introduce an aggregation framework to address multi-stage stochastic programs with mixed-integer state variables and continuous local variables (MSILPs). Our aggregation framework imposes additional structure to the integer state variables by leveraging the information of the underlying stochastic process, which is modeled as a Markov chain (MC). We demonstrate that the aggregated MSILP can be … Read more

V-polyhedral disjunctive cuts

We introduce V-polyhedral disjunctive cuts (VPCs) for generating valid inequalities from general disjunctions. Cuts are critical to integer programming solvers, but the benefit from many families is only realized when the cuts are applied recursively, causing numerical instability and “tailing off” of cut strength after several rounds. To mitigate these difficulties, the VPC framework offers … Read more

Optimizing the Trade-Off Between Batching and Waiting: Subadditive Dispatching

Motivated by applications in e-commerce logistics where orders or items arrive at different times and must be dispatched or processed in batches, we propose the subadditive dispatching problem (SAD), a strongly NP-hard problem defined by a set of orders with release times and a non-decreasing subadditive dispatch time function. A single uncapacitated vehicle must dispatch … Read more

An adaptive superfast inexact proximal augmented Lagrangian method for smooth nonconvex composite optimization problems

This work presents an adaptive superfast proximal augmented Lagrangian (AS-PAL) method for solving linearly-constrained smooth nonconvex composite optimization problems. Each iteration of AS-PAL inexactly solves a possibly nonconvex proximal augmented Lagrangian (AL) subproblem obtained by an aggressive/adaptive choice of prox stepsize with the aim of substantially improving its computational performance followed by a full Lagrangian … Read more

Source Detection on Graphs

Spreading processes on networks (graphs) have become ubiquitous in modern society with prominent examples such as infections, rumors, excitations, contaminations, or disturbances. Finding the source of such processes based on observations is important and difficult. We abstract the problem mathematically as an optimization problem on graphs. For the deterministic setting we make connections to the … Read more