Theorems of the Alternative for Conic Integer Programming

Farkas’ Lemma is a foundational result in linear programming, with implications in duality, optimality conditions, and stochastic and bilevel programming. Its generalizations are known as theorems of the alternative. There exist theorems of the alternative for integer programming and conic programming. We present theorems of the alternative for conic integer programming. We provide a nested … Read more

Risk-Averse Bi-Level Stochastic Network Interdiction Model for Cyber-Security Risk Management

Security of cyber networks is crucial; recent severe cyber-attacks have had a devastating effect on many large organizations. The attack graph, which maps the potential attack paths of a cyber network, is a popular tool for analyzing cyber system vulnerability. In this study, we propose a bi-level stochastic network interdiction model on an attack graph … Read more

Solving Multiobjective Mixed Integer Convex Optimization Problems

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, … Read more

Decomposing the Train Scheduling Problem into Integer Optimal Polytopes

This paper presents conditions for which the linear relaxation for the train scheduling problem is integer-optimal. These conditions are then used to identify how to partition a general problem’s feasible region into integer-optimal polytopes. Such an approach yields an extended formulation that contains far fewer binary variables. Our computational experiments show that this approach results … Read more

Multiphase Mixed-Integer Nonlinear Optimal Control of Hybrid Electric Vehicles

This paper considers the problem of computing the non-causal minimum-fuel energy management strategy of a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem arising when optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by … Read more

On the Relation between the Extended Supporting Hyperplane Algorithm and Kelley’s Cutting Plane Algorithm

Recently, Kronqvist et al.rediscovered the supporting hyperplane algorithm of Veinott and demonstrated its computational benefits for solving convex mixed-integer nonlinear programs. In this paper we derive the algorithm from a geometric point of view. This enables us to show that the supporting hyperplane algorithm is equivalent to Kelley’s cutting plane algorithm applied to a particular … Read more

Radius of Robust Feasibility for Mixed-Integer Problems

For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal “size” of the uncertainty set such that robust feasibility of the MIP can be guaranteed. To the best of our knowledge, the approaches for the RRF presented in the literature are restricted to continuous … Read more

Oracle-Based Algorithms for Binary Two-Stage Robust Optimization

In this work we study binary two-stage robust optimization problems with objective uncertainty. The concept of two-stage robustness is tailored for problems under uncertainty which have two different kinds of decision variables, first-stage decisions which have to be made here-and-now and second-stage decisions which can be determined each time after an uncertain scenario occured. We … Read more

A Python package for multi-stage stochastic programming

This paper presents a Python package to solve multi-stage stochastic linear programs (MSLP) and multi-stage stochastic integer programs (MSIP). Algorithms based on an extensive formulation and Stochastic Dual Dynamic (Integer) Programming (SDDP/SDDiP) method are implemented. The package is synthetically friendly and has a number of features which are not available in the competing software packages. … Read more

Stochastic Lipschitz Dynamic Programming

We propose a new algorithm for solving multistage stochastic mixed integer linear programming (MILP) problems with complete continuous recourse. In a similar way to cutting plane methods, we construct nonlinear Lipschitz cuts to build lower approximations for the non-convex cost to go functions. An example of such a class of cuts are those derived using … Read more