A first-order augmented Lagrangian method for constrained minimax optimization

In this paper we study a class of constrained minimax problems. In particular, we propose a first-order augmented Lagrangian method for solving them, whose subproblems turn out to be a much simpler structured minimax problem and are suitably solved by a first-order method recently developed in [26] by the authors. Under some suitable assumptions, an … Read more

Data-driven Prediction of Relevant Scenarios for Robust Combinatorial Optimization

We study iterative methods for (two-stage) robust combinatorial optimization problems with discrete uncertainty. We propose a machine-learning-based heuristic to determine starting scenarios that provide strong lower bounds. To this end, we design dimension-independent features and train a Random Forest Classifier on small-dimensional instances. Experiments show that our method improves the solution process for larger instances … Read more

Solving Unsplittable Network Flow Problems with Decision Diagrams

In unsplittable network flow problems, certain nodes must satisfy a combinatorial requirement that the incoming arc flows cannot be split or merged when routed through outgoing arcs. This so-called “no-split no-merge” requirement arises in unit train scheduling where train consists should remain intact at stations that lack necessary equipment and manpower to attach/detach them. Solving … Read more

First-order penalty methods for bilevel optimization

In this paper we study a class of unconstrained and constrained bilevel optimization problems in which the lower-level part is a convex optimization problem, while the upper-level part is possibly a nonconvex optimization problem. In particular, we propose penalty methods for solving them, whose subproblems turn out to be a structured minimax problem and are … Read more

The Hamiltonian p-median Problem: Polyhedral Results and Branch-and-Cut Algorithm

In this paper we study the Hamiltonian \(p\)-median problem, in which a weighted graph on \(n\) vertices is to be partitioned into \(p\) simple cycles of minimum total weight. We introduce two new families of valid inequalities for a formulation of the problem in the space of natural edge variables. Each one of the families … Read more

Inexact reduced gradient methods in nonconvex optimization

This paper proposes and develops new linesearch methods with inexact gradient information for finding stationary points of nonconvex continuously differentiable functions on finite-dimensional spaces. Some abstract convergence results for a broad class of linesearch methods are established. A general scheme for inexact reduced gradient (IRG) methods is proposed, where the errors in the gradient approximation … Read more

Strong Partitioning and a Machine Learning Approximation for Accelerating the Global Optimization of Nonconvex QCQPs

We learn optimal instance-specific heuristics for the global minimization of nonconvex quadratically-constrained quadratic programs (QCQPs). Specifically, we consider partitioning-based convex mixed-integer programming relaxations for nonconvex QCQPs and propose the novel problem of strong partitioning to optimally partition variable domains without sacrificing global optimality. Since solving this max-min strong partitioning problem exactly can be very challenging, … Read more

A Robust Location-Allocation Model for Optimizing a Multi-Echelon Blood Supply Chain Network Under Uncertainty

Designing and planning blood supply chains is very complicated due to its uncertain nature, such as uncertain blood demand, high vulnerability to disruptions, irregular donation, and blood perishability. In this vein, this paper seeks to optimize a multi-echelon blood supply chain network under uncertainty by designing a robust location-allocation model. The magnitude of the earthquake … Read more

Stochastic Dynamic Lot-sizing with Supplier-Driven Substitution and Service Level Constraints

We consider a multi-stage stochastic lot-sizing problem with service level constraints and supplier-driven product substitution. A firm has multiple products and it has the option to meet demand from substitutable products at a cost. Considering the uncertainty in future demands, the firm wishes to make ordering decisions in every period such that the probability that … Read more

Superiorization: The asymmetric roles of feasibility-seeking and objective function reduction

The superiorization methodology can be thought of as lying conceptually between feasibility-seeking and constrained minimization. It is not trying to solve the full-fledged constrained minimization problem composed from the modeling constraints and the chosen objective function. Rather, the task is to find a feasible point which is “superior” (in a well-defined manner) with respect to … Read more